Quantum Machine Learning for Malware Classification

被引:0
作者
Barrue, Gregoire [1 ]
Quertier, Tony [1 ]
机构
[1] Orange Innovat, Rennes, France
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT V | 2025年 / 2137卷
关键词
Quantum Machine Learning; Malware classification; variational quantum circuit;
D O I
10.1007/978-3-031-74643-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a context of malicious software detection, machine learning (ML) is widely used to generalize to new malware. However, it has been demonstrated that ML models can be fooled or may have generalization problems on malware that has never been seen. We investigate the possible benefits of quantum algorithms for classification tasks. We implement two models of Quantum Machine Learning algorithms, and we compare them to classical models for the classification of a dataset composed of malicious and benign executable files. We try to optimize our algorithms based on methods found in the literature, and analyze our results in an exploratory way, to identify the most interesting directions to explore for the future.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 25 条
[1]  
Abbas A., 2021, Effective dimension of machine learning models
[2]  
Anderson H. S., 2018, Ember: An open dataset for training static pe malware machine learning models
[3]  
[Anonymous], 2011, P 8 INT S VIS CYB SE, DOI [DOI 10.1145/2016904.2016908, 10.1145/2016904.2016908]
[4]   Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning [J].
Bokhan, Denis ;
Mastiukova, Alena S. ;
Boev, Aleksey S. ;
Trubnikov, Dmitrii N. ;
Fedorov, Aleksey K. .
FRONTIERS IN PHYSICS, 2022, 10
[5]   Generalization in quantum machine learning from few training data [J].
Caro, Matthias C. ;
Huang, Hsin-Yuan ;
Cerezo, M. ;
Sharma, Kunal ;
Sornborger, Andrew ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Challenges and opportunities in quantum machine learning [J].
Cerezo, M. ;
Verdon, Guillaume ;
Huang, Hsin-Yuan ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09) :567-576
[7]   A hybrid classical-quantum approach for multi-class classification [J].
Chalumuri, Avinash ;
Kune, Raghavendra ;
Manoj, B. S. .
QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
[8]  
Farhi E, 2018, Arxiv, DOI arXiv:1802.06002
[9]   Supervised learning with quantum-enhanced feature spaces [J].
Havlicek, Vojtech ;
Corcoles, Antonio D. ;
Temme, Kristan ;
Harrow, Aram W. ;
Kandala, Abhinav ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2019, 567 (7747) :209-212
[10]  
Hoffmann T., 2022, arXiv