Quantum Machine Learning for Malware Classification

被引:0
作者
Barrue, Gregoire [1 ]
Quertier, Tony [1 ]
机构
[1] Orange Innovat, Rennes, France
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT V | 2025年 / 2137卷
关键词
Quantum Machine Learning; Malware classification; variational quantum circuit;
D O I
10.1007/978-3-031-74643-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a context of malicious software detection, machine learning (ML) is widely used to generalize to new malware. However, it has been demonstrated that ML models can be fooled or may have generalization problems on malware that has never been seen. We investigate the possible benefits of quantum algorithms for classification tasks. We implement two models of Quantum Machine Learning algorithms, and we compare them to classical models for the classification of a dataset composed of malicious and benign executable files. We try to optimize our algorithms based on methods found in the literature, and analyze our results in an exploratory way, to identify the most interesting directions to explore for the future.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 25 条
  • [1] Abbas A., 2021, arXiv, DOI DOI 10.48550/ARXIV.2112.04807
  • [2] Anderson HS, 2018, EMBER OPEN DATASET T
  • [3] Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning
    Bokhan, Denis
    Mastiukova, Alena S.
    Boev, Aleksey S.
    Trubnikov, Dmitrii N.
    Fedorov, Aleksey K.
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [4] Generalization in quantum machine learning from few training data
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Cerezo, M.
    Sharma, Kunal
    Sornborger, Andrew
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Challenges and opportunities in quantum machine learning
    Cerezo, M.
    Verdon, Guillaume
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09): : 567 - 576
  • [6] A hybrid classical-quantum approach for multi-class classification
    Chalumuri, Avinash
    Kune, Raghavendra
    Manoj, B. S.
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [7] Farhi E, 2018, Arxiv, DOI [arXiv:1802.06002, 10.48550/arXiv.1802.06002]
  • [8] Supervised learning with quantum-enhanced feature spaces
    Havlicek, Vojtech
    Corcoles, Antonio D.
    Temme, Kristan
    Harrow, Aram W.
    Kandala, Abhinav
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. NATURE, 2019, 567 (7747) : 209 - 212
  • [9] Hoffmann T., 2022, arXiv, DOI DOI 10.48550/ARXIV.2211.13981
  • [10] Quantum convolutional neural network for classical data classification
    Hur, Tak
    Kim, Leeseok
    Park, Daniel K.
    [J]. QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)