Applications of artificial intelligence-based models in vulnerable carotid plaque

被引:10
作者
Cau, Riccardo [1 ]
Pisu, Francesco [1 ]
Muscogiuri, Giuseppe [2 ,3 ]
Mannelli, Lorenzo [4 ]
Suri, Jasjit S. [5 ]
Saba, Luca [1 ]
机构
[1] Azienda Osped Univ AOU, Dept Radiol, Cagliari Polo Monserrato s s 554 Monserrato, I-09045 Cagliari, Italy
[2] Univ Milano Bicocca, Sch Med & Surg, Milan 20126, Italy
[3] San Luca Hosp, IRCCS Ist Auxol Italiano, Dept Radiol, I-20141 Milan, Italy
[4] IRCCS SDN, Dept Radiol, I-80121 Naples, Italy
[5] AtheroPointTM, Stroke Monitoring & Diag Div, Roseville, CA 95747 USA
关键词
Cardiovascular imaging; carotid; AI; vulnerable plaque; IMAGING BIOMARKERS; ULTRASOUND IMAGES; AMERICAN-SOCIETY; RISK; ATHEROSCLEROSIS; RECOMMENDATIONS; SEGMENTATION;
D O I
10.20517/2574-1209.2023.78
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded as the primary parameter for risk assessment and determining appropriate therapeutic interventions. Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid imaging can offer several solutions for tissue characterization and classification. This review aims to present a comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AIbased models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches.
引用
收藏
页数:17
相关论文
共 50 条
[31]   Artificial Intelligence-based Deep Learning Architecture for Tuberculosis Detection [J].
Gupta, Puja ;
Srivastava, Sumit ;
Nath, Vijay .
WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (03) :1937-1953
[32]   A Practical Guide to Artificial Intelligence-Based Image Analysis in Radiology [J].
Weikert, Thomas ;
Cyriac, Joshy ;
Yang, Shan ;
Nesic, Ivan ;
Parmar, Victor ;
Stieltjes, Bram .
INVESTIGATIVE RADIOLOGY, 2020, 55 (01) :1-7
[33]   Artificial Intelligence-Based Radiotherapy Contouring and Planning to Improve Global Access to Cancer Care [J].
Court, Laurence E. ;
Aggarwal, Ajay ;
Jhingran, Anuja ;
Naidoo, Komeela ;
Netherton, Tucker ;
Olanrewaju, Adenike ;
Peterson, Christine ;
Parkes, Jeannette ;
Simonds, Hannah ;
Trauernicht, Christoph ;
Zhang, Lifei ;
Beadle, Beth M. .
JCO GLOBAL ONCOLOGY, 2024, 10
[34]   The Value of Multimodal Ultrasonic Scoring System in the Diagnosis of Carotid Vulnerable Plaque A Comparative Study with Pathology [J].
Yan, Lei ;
Ruan, Qinyun ;
Ye, Xiaojian ;
Xu, Rongquan ;
Fu, Liyun .
JOURNAL OF ULTRASOUND IN MEDICINE, 2023, 42 (09) :2135-2142
[35]   Ultrasound lmaging-vulnerable plaque diagnostics: Automatic carotid plaque segmentation based on deep learning [J].
Chen, Xiao-xiao ;
Kong, Zi-xiang ;
Wei, Shu-fang ;
Liang, Fei ;
Feng, Ting ;
Wang, Shan-shan ;
Gao, Jian-song .
JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (03)
[36]   Efficacy of early carotid endarterectomy for vulnerable plaque in the common carotid artery [J].
Kuniaki Tanahashi ;
Yoshio Araki ;
Mikio Maruwaka ;
Atsushi Natsume .
Acta Neurochirurgica, 2016, 158 :561-563
[37]   A Multicenter Study on Carotid Ultrasound Plaque Tissue Characterization and Classification Using Six Deep Artificial Intelligence Models: A Stroke Application [J].
Saba, Luca ;
Sanagala, Skandha S. ;
Gupta, Suneet K. ;
Koppula, Vijaya K. ;
Laird, John R. ;
Viswanathan, Vijay ;
Sanches, Miguel J. ;
Kitas, George D. ;
Johri, Amer M. ;
Sharma, Neeraj ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70 :1-12
[38]   Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network [J].
Wei, Yao ;
Yang, Bin ;
Wei, Ling ;
Xue, Jun ;
Zhu, Yicheng ;
Li, Jianchu ;
Qin, Mingwei ;
Zhang, Shuyang ;
Dai, Qing ;
Yang, Meng .
ULTRASCHALL IN DER MEDIZIN, 2023, :493-500
[39]   In search of a marker of vulnerable carotid plaque: Is the key in the heart? [J].
Petretta, Mario ;
Cuocolo, Alberto .
ATHEROSCLEROSIS, 2012, 223 (01) :95-97
[40]   Aquaporin 9: Exacerbation of Vulnerable Carotid Plaque Formation [J].
Xu, Bin ;
Zheng, Yifei ;
Wang, Yi ;
Sun, Jie ;
Lang, Dehai ;
Xu, Qiyang .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2025,