Applications of artificial intelligence-based models in vulnerable carotid plaque

被引:10
作者
Cau, Riccardo [1 ]
Pisu, Francesco [1 ]
Muscogiuri, Giuseppe [2 ,3 ]
Mannelli, Lorenzo [4 ]
Suri, Jasjit S. [5 ]
Saba, Luca [1 ]
机构
[1] Azienda Osped Univ AOU, Dept Radiol, Cagliari Polo Monserrato s s 554 Monserrato, I-09045 Cagliari, Italy
[2] Univ Milano Bicocca, Sch Med & Surg, Milan 20126, Italy
[3] San Luca Hosp, IRCCS Ist Auxol Italiano, Dept Radiol, I-20141 Milan, Italy
[4] IRCCS SDN, Dept Radiol, I-80121 Naples, Italy
[5] AtheroPointTM, Stroke Monitoring & Diag Div, Roseville, CA 95747 USA
关键词
Cardiovascular imaging; carotid; AI; vulnerable plaque; IMAGING BIOMARKERS; ULTRASOUND IMAGES; AMERICAN-SOCIETY; RISK; ATHEROSCLEROSIS; RECOMMENDATIONS; SEGMENTATION;
D O I
10.20517/2574-1209.2023.78
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded as the primary parameter for risk assessment and determining appropriate therapeutic interventions. Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid imaging can offer several solutions for tissue characterization and classification. This review aims to present a comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AIbased models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Identification of vulnerable carotid plaque with CT-based radiomics nomogram [J].
Liu, M. ;
Chang, N. ;
Zhang, S. ;
Du, Y. ;
Zhang, X. ;
Ren, W. ;
Sun, J. ;
Bai, J. ;
Wang, L. ;
Zhang, G. .
CLINICAL RADIOLOGY, 2023, 78 (11) :E856-E863
[23]   Review of imaging biomarkers for the vulnerable carotid plaque [J].
Saba, Luca ;
Agarwal, Nivedita ;
Cau, Riccardo ;
Gerosa, Clara ;
Sanfilippo, Roberto ;
Porcu, Michele ;
Montisci, Roberto ;
Cerrone, Giulia ;
Qi, Yang ;
Balestrieri, Antonella ;
Lucatelli, Pierleone ;
Politi, Carola ;
Faa, Gavino ;
Suri, Jasjit S. .
JVS-VASCULAR SCIENCE, 2021, 2 :149-158
[24]   Artificial Intelligence-based quantification of atherosclerotic plaque and stenosis from coronary computed tomography angiography using a novel method [J].
Lin, Andrew ;
Manral, Nipun ;
McElhinney, Priscilla ;
Killekar, Aditya ;
Matsumoto, Hidenari ;
Kwiecinski, Jacek ;
Pieszko, Konrad ;
Razipour, Aryabod ;
Grodecki, Kajetan ;
Park, Caroline ;
Doris, Mhairi ;
Kwan, Alan C. ;
Han, Donghee ;
Kuronama, Keiichiro ;
Tomasino, Guadalupe Flores ;
Tzolos, Evangelos ;
Shanbhag, Aakash ;
Goeller, Markus ;
Marwan, Mohamed ;
Cadet, Sebastien ;
Achenbach, Stephan ;
Nicholls, Stephen J. ;
Wong, Dennis T. ;
Berman, Daniel S. ;
Dweck, Marc ;
Newby, David E. ;
Williams, Michelle C. ;
Slomka, Piotr J. ;
Dey, Damini .
MEDICAL IMAGING 2022: PHYSICS OF MEDICAL IMAGING, 2022, 12031
[25]   Economics of the Adoption of Artificial Intelligence-Based Digital Technologies in Agriculture [J].
Khanna, Madhu ;
Atallah, Shady S. ;
Heckelei, Thomas ;
Wu, Linghui ;
Storm, Hugo .
ANNUAL REVIEW OF RESOURCE ECONOMICS, 2024, 16 :41-61
[26]   Artificial Intelligence-Based Treatment Decisions: A New Era for NSCLC [J].
Fiste, Oraianthi ;
Gkiozos, Ioannis ;
Charpidou, Andriani ;
Syrigos, Nikolaos K. .
CANCERS, 2024, 16 (04)
[27]   Artificial Intelligence-Based Material Discovery for Clean Energy Future [J].
Maleki, Reza ;
Asadnia, Mohsen ;
Razmjou, Amir .
ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (10)
[28]   Artificial Intelligence-based Cell Survival Colony Counting Model [J].
Wang, Wanrong Mona ;
Li, Joanna ;
Sevyeri, Laya Rafiee ;
Enger, Shirin Abbasi Nejad .
RADIOTHERAPY AND ONCOLOGY, 2025, 206
[29]   Artificial intelligence-based approach for cluster identification in a CFB riser [J].
Wang, Tianyu ;
Deng, Aiming ;
He, Yurong ;
Wu, Bin ;
Gao, Runzhe ;
Tang, Tianqi .
CHEMICAL ENGINEERING SCIENCE, 2023, 268
[30]   Artificial intelligence-based traffic flow prediction: a comprehensive review [J].
Sayed A. Sayed ;
Yasser Abdel-Hamid ;
Hesham Ahmed Hefny .
Journal of Electrical Systems and Information Technology, 10 (1)