A Near-Infrared Fluorescent Nanosensor for Direct and Real-Time Measurement of Indole-3-Acetic Acid in Plants

被引:0
作者
Khong, Duc Thinh [1 ,2 ]
Vu, Kien Van [1 ,3 ]
Sng, Benny Jian Rong [1 ,3 ,4 ]
Choi, Ian Kin Yuen [3 ,4 ]
Porter, Thomas K. [5 ]
Cui, Jianqiao [5 ]
Gong, Xun [5 ]
Wang, Song [1 ]
Nguyen, Nguyen Hoai [1 ,3 ]
Ang, Mervin Chun-Yi [1 ]
Park, Minkyung [5 ]
Lew, Tedrick Thomas Salim [6 ,7 ]
Loh, Suh In [1 ]
Ahsim, Riza [1 ]
Chin, Hui Jun [1 ,3 ]
Singh, Gajendra Pratap [1 ]
Chan-Park, Mary B. [1 ,2 ]
Chua, Nam-Hai [1 ,3 ]
Strano, Michael S. [1 ,5 ]
Jang, In-Cheol [1 ,3 ,4 ]
机构
[1] Singapore MIT Alliance Res & Technol, Disrupt & Sustainable Technol Agr Precis, Singapore 138602, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[3] Natl Univ Singapore, Temasek Life Sci Lab, 1 Res Link, Singapore 117604, Singapore
[4] Natl Univ Singapore, Dept Biol Sci, Singapore 117558, Singapore
[5] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[6] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[7] ASTAR, Inst Mat Res & Engn, Singapore 138634, Singapore
基金
美国食品与农业研究所; 新加坡国家研究基金会; 美国国家科学基金会;
关键词
corona phase molecular recognition; single-walled carbonnanotube; nanosensor; auxin; indole-3-aceticacid; plant stress; BOX PROTEIN TIR1; CARBON NANOTUBES; AUXIN DISTRIBUTION; NEIGHBOR-DETECTION; GROWTH; ARABIDOPSIS; TRANSPORT; LOCALIZATION; EXPRESSION; MECHANISM;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Auxin, particularly indole-3-acetic acid (IAA), is a phytohormone critical for plant growth, development, and response to environmental stresses like shade avoidance syndrome and thermomorphogenesis. Despite its importance, there is no existing method that allows for convenient and direct detection of IAA in various plant species. Here, we introduce a near-infrared fluorescent nanosensor that directly measures IAA in planta using corona phase molecular recognition with high selectivity, specificity, and spatiotemporal resolution. The IAA sensor can be conveniently functionalized to living plants and localized in various tissues, including leaf, cotyledon, and root tip, with the capability to visualize intrinsic IAA distribution. The IAA nanosensor was further tested in Arabidopsis thaliana leaf with tunable levels of endogenous IAA, in which the sensor measured dynamic and spatiotemporal changes of IAA. We also showed that the IAA sensor can be used for qualitative and quantitative mapping of IAA induction and spatial movement in various plant species undergoing environmental or stress response, such as shade avoidance syndrome, high temperature stress, and gravitropism. This highlights the potential application of IAA sensor for monitoring plant health in agriculture.
引用
收藏
页码:15302 / 15321
页数:20
相关论文
共 80 条
  • [1] Early genes and auxin action
    Abel, S
    Theologis, A
    [J]. PLANT PHYSIOLOGY, 1996, 111 (01) : 9 - 17
  • [2] PIN-Dependent Auxin Transport: Action, Regulation, and Evolution
    Adamowski, Maciek
    Friml, Jiri
    [J]. PLANT CELL, 2015, 27 (01) : 20 - 32
  • [3] Decoding early stress signaling waves in living plants using nanosensor multiplexing
    Ang, Mervin Chun-Yi
    Saju, Jolly Madathiparambil
    Porter, Thomas K.
    Mohaideen, Sayyid
    Sarangapani, Sreelatha
    Khong, Duc Thinh
    Wang, Song
    Cui, Jianqiao
    Loh, Suh In
    Singh, Gajendra Pratap
    Chua, Nam-Hai
    Strano, Michael S.
    Sarojam, Rajani
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition
    Ang, Mervin Chun-Yi
    Dhar, Niha
    Khong, Duc Thinh
    Lew, Tedrick Thomas Salim
    Park, Minkyung
    Sarangapani, Sreelatha
    Cui, Jianqiao
    Dehadrai, Aniket
    Singh, Gajendra Pratap
    Chan-Park, Mary B.
    Sarojam, Rajani
    Strano, Michael
    [J]. ACS SENSORS, 2021, 6 (08) : 3032 - 3046
  • [5] Enhancing climate change resilience in agricultural crops
    Benitez-Alfonso, Yoselin
    Soanes, Beth K.
    Zimba, Sibongile
    Sinanaj, Besiana
    German, Liam
    Sharma, Vinay
    Bohra, Abhishek
    Kolesnikova, Anastasia
    Dunn, Jessica A.
    Martin, Azahara C.
    Rahman, Muhammad Khashi u
    Saati-Santamaria, Zaki
    Garcia-Fraile, Paula
    Ferreira, Evander A.
    Frazao, Leidivan A.
    Cowling, Wallace A.
    Siddique, Kadambot H. M.
    Pandey, Manish K.
    Farroq, Muhammad
    Varshney, Rajeev K.
    Chapman, Mark A.
    Boesch, Christine
    Daszkowska-Golec, Agata
    Foyer, Christine H.
    [J]. CURRENT BIOLOGY, 2023, 33 (23) : R1246 - R1261
  • [6] Fluorescence Spectroscopy of Gel-Immobilized Single-Wall Carbon Nanotubes with Microfluidic Control of the Surfactant Environment
    Bergler, Felix F.
    Schoeppler, Friedrich
    Brunecker, Frank K.
    Hailman, Michael
    Hertel, Tobias
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (25) : 13318 - 13323
  • [7] Plants under Stress: Involvement of Auxin and Cytokinin
    Bielach, Agnieszka
    Hrtyan, Monika
    Tognetti, Vanesa B.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (07)
  • [8] Auxin biosynthesis: spatial regulation and adaptation to stress
    Blakeslee, Joshua J.
    Rossi, Tatiana Spatola
    Kriechbaumer, Verena
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (19) : 5041 - 5049
  • [9] The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots
    Blilou, I
    Xu, J
    Wildwater, M
    Willemsen, V
    Paponov, I
    Friml, J
    Heidstra, R
    Aida, M
    Palme, K
    Scheres, B
    [J]. NATURE, 2005, 433 (7021) : 39 - 44
  • [10] Near-Infrared Fluorescent Sensors based on Single-Walled Carbon Nanotubes for Life Sciences Applications
    Boghossian, Ardemis A.
    Zhang, Jingqing
    Barone, Paul W.
    Reuel, Nigel F.
    Kim, Jong-Ho
    Heller, Daniel A.
    Ahn, Jin-Ho
    Hilmer, Andrew J.
    Rwei, Alina
    Arkalgud, Jyoti R.
    Zhang, Cathy T.
    Strano, Michael S.
    [J]. CHEMSUSCHEM, 2011, 4 (07) : 848 - 863