Point defect formation at finite temperatures with machine learning force fields

被引:0
|
作者
Mosquera-Lois, Irea [1 ,2 ]
Klarbring, Johan [1 ,2 ,3 ]
Walsh, Aron [1 ,2 ]
机构
[1] Imperial Coll London, Thomas Young Ctr, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
INITIO MOLECULAR-DYNAMICS; FREE-ENERGIES; MIGRATION ENTROPIES; VACANCY; TRANSITION; DIFFUSION; SIMULATION; PARAMETERS; EFFICIENCY; SILICON;
D O I
10.1039/d4sc08582e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Point defects dictate the properties of many functional materials. The standard approach to modelling the thermodynamics of defects relies on a static description, where the change in Gibbs free energy is approximated by the internal energy. This approach has a low computational cost, but ignores contributions from atomic vibrations and structural configurations that can be accessed at finite temperatures. We train a machine learning force field (MLFF) to explore dynamic defect behaviour using Te+1i and V+2Te in CdTe as exemplars. We consider the different entropic contributions (e.g., electronic, spin, vibrational, orientational, and configurational) and compare methods to compute the defect free energies, ranging from a harmonic treatment to a fully anharmonic approach based on thermodynamic integration. We find that metastable configurations are populated at room temperature and thermal effects increase the predicted concentration of Te+1i by two orders of magnitude - and can thus significantly affect the predicted properties. Overall, our study underscores the importance of finite-temperature effects and the potential of MLFFs to model defect dynamics at both synthesis and device operating temperatures.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] On the Enthalpy and Entropy of Point Defect Formation in Crystals
    Kobelev, N. P.
    Khonik, V. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2018, 126 (03) : 340 - 346
  • [12] Rapid Characterization of Point Defects in Solid-State Ion Conductors Using Raman Spectroscopy, Machine-Learning Force Fields, and Atomic Raman Tensors
    O'Leary, Willis
    Grumet, Manuel
    Kaiser, Waldemar
    Bucko, Tomas
    Rupp, Jennifer L. M.
    Egger, David A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (39) : 26863 - 26876
  • [13] Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields
    McDonagh, James L.
    Shkurti, Ardita
    Bray, David J.
    Anderson, Richard L.
    Pyzer-Knapp, Edward O.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4278 - 4288
  • [14] Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects
    Youssef, Mostafa
    Yildiz, Bilge
    PHYSICAL REVIEW B, 2012, 86 (14)
  • [15] Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness
    Conflitti, Paolo
    Raniolo, Stefano
    Limongelli, Vittorio
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (18) : 6047 - 6061
  • [16] Machine learning substitutional defect formation energies in ABO3 perovskites
    Sharma, Vinit
    Kumar, Pankaj
    Dev, Pratibha
    Pilania, Ghanshyam
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (03)
  • [17] Atomistic simulation of batteries via machine learning force fields: from bulk to interface
    Zhang, Jinkai
    Li, Yaopeng
    Chen, Ming
    Fu, Jiaping
    Zeng, Liang
    Tan, Xi
    Sun, Tian
    Feng, Guang
    JOURNAL OF ENERGY CHEMISTRY, 2025, 106 : 911 - 929
  • [18] Nature of the Superionic Phase Transition of Lithium Nitride from Machine Learning Force Fields
    Krenzer, Gabriel
    Klarbring, Johan
    Tolborg, Kasper
    Rossignol, Hugo
    McCluskey, Andrew R.
    Morgan, Benjamin J.
    Walsh, Aron
    CHEMISTRY OF MATERIALS, 2023, 35 (15) : 6133 - 6140
  • [19] Transferable Force Fields from Experimental Scattering Data with Machine Learning Assisted Structure Refinement
    Shanks, Brennon L.
    Potoff, Jeffrey J.
    Hoepfner, Michael P.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (49) : 11512 - 11520
  • [20] Insights into defect cluster formation in non-stoichiometric wustite (Fe1-xO) at elevated temperatures: accurate force field from deep learning
    Liang, Zeng
    Li, Kejiang
    Zhang, Jianliang
    Conejo, Alberto N.
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)