Traffic flow prediction based on graph convolutional networks with a parallel attention network and stacked gate recurrent units

被引:0
|
作者
Dawen Xia [1 ]
Yuce Ao [1 ]
Xiaoduo Wei [1 ]
Yunsong Li [1 ]
Yan Chen [1 ]
Yang Hu [2 ]
Yantao Li [3 ]
Huaqing Li [4 ]
机构
[1] Guizhou Minzu University,College of Data Science and Information Engineering
[2] Guizhou Traffic Technician and Transportation College,Department of Automotive Engineering
[3] Chongqing University,College of Computer Science
[4] Southwest University,College of Electronic and Information Engineering
关键词
Intelligent transportation systems; Traffic flow prediction; Spatiotemporal characteristics; Parallel attention network; Graph convolutional networks; Stacked gated recurrent units;
D O I
10.1007/s11042-024-19479-z
中图分类号
学科分类号
摘要
Accurate traffic flow prediction is essential to address traffic issues and assist traffic managers make informed decisions in intelligent transportation systems. Extracting potential features from traffic data is challenging due to the complex topology of urban road networks and the time-varying traffic flow. To capture the global spatiotemporal characteristics of traffic flow, we propose a novel model based on graph convolutional networks with a parallel attention network and stacked gated recurrent units (PAGCN-SGRU). First, the parallel attention (PA) network enhances the feature representation of global traffic road nodes and road segments. Then, the graph convolutional networks (GCN) are designed to extract spatial characteristics. Next, the stacked gate recurrent units (SGRU) are employed to capture temporal features. Finally, PAGCN-SGRU discovers global spatiotemporal features for traffic flow prediction. The experimental results demonstrate that the accuracy of PAGCN-SGRU under the SZ-dataset is improved by 9.76%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 72.54%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 5.76%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 16.07%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 2.07%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 1.82%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 3.35%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 6.59%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, respectively, compared to that of HA, ARIMA, SVR, GCN, T-GCN, A3T-GCN, ST-GCN, and DCRNN. In the Los-dataset, the accuracy values increase by 7.11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 8.94%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 6.66%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 7.77%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 3.43%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 2.45%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 2.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 4.09%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, respectively.
引用
收藏
页码:14329 / 14358
页数:29
相关论文
共 50 条
  • [1] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [2] GECRAN: Graph embedding based convolutional recurrent attention network for traffic flow prediction
    Yan, Jianqiang
    Zhang, Lin
    Gao, Yuan
    Qu, Boting
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [3] Attention based convolutional networks for traffic flow prediction
    Lin, Juncong
    Lin, Chengqiao
    Ye, Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7379 - 7394
  • [4] Attention based convolutional networks for traffic flow prediction
    Juncong Lin
    Chengqiao Lin
    Qi Ye
    Multimedia Tools and Applications, 2024, 83 : 7379 - 7394
  • [5] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Han, Yang
    Zhao, Shengjie
    Deng, Hao
    Jia, Wenzhen
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17809 - 17823
  • [6] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Yang Han
    Shengjie Zhao
    Hao Deng
    Wenzhen Jia
    Applied Intelligence, 2023, 53 : 17809 - 17823
  • [7] Road Network Traffic Flow Prediction Method Based on Graph Attention Networks
    Wang, Junqiang
    Yang, Shuqiang
    Gao, Ya
    Wang, Jun
    Alfarraj, Osama
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (15)
  • [8] Attention-based Bicomponent Synchronous Graph Convolutional Network for traffic flow prediction
    Shen, Cheng
    Han, Kai
    Bi, Tianyuan
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 778 - 785
  • [9] STBGRN: A Traffic Prediction Model Based on Spatiotemporal Bidirectional Gated Recurrent Units and Graph Convolutional Residual Networks
    Zhang, Jijie
    Xu, Xiaolong
    Xiao, Fu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [10] IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction
    An, Jiyao
    Guo, Liang
    Liu, Wei
    Fu, Zhiqiang
    Ren, Ping
    Liu, Xinzhi
    Li, Tao
    NEURAL NETWORKS, 2021, 143 : 355 - 367