Effective metric description of 2+1 dimensional quantum black holes

被引:0
|
作者
Mattia Damia Paciarini [1 ]
Stefan Hohenegger [2 ]
Mikołaj Myszkowski [1 ]
Francesco Sannino [1 ]
机构
[1] Southern Denmark University,Quantum Theory Center (ℏQTC) & D
[2] Université Claude Bernard Lyon 1,IAS, IMADA
[3] CNRS/IN2P3,Department of Physics E. Pancini
[4] IP2I Lyon,undefined
[5] Scuola Superiore Meridionale,undefined
[6] Universit‘a di Napoli Federico II,undefined
[7] INFN Sezione di Napoli,undefined
来源
The European Physical Journal C | / 85卷 / 6期
关键词
D O I
10.1140/epjc/s10052-025-14286-8
中图分类号
学科分类号
摘要
We develop an effective metric description of 2+1 dimensional black holes describing deviations from the classical Ban̈ados–Teitelboim–Zanelli (BTZ) black hole. The latter is a classical 2+1 dimensional rotating black hole with constant negative curvature. The effective metric is constrained by imposing the black hole symmetries and asymptotic classical behavior. The deformed metric is parametrized in terms of a physical quantity that we choose to be a physical distance. The latter can be solved for in three main regions of interest, the one around the horizon, origin, and spatial infinity. The finiteness of physical quantities at the horizon, such as the Ricci and Kretschmann scalars, leads to universal constraints on the physical parameters of the metric around the horizon. This allows us to further derive the general form of the corrected Hawking temperature in terms of the physical parameters of the effective metric. Assuming that the approach can be generalized to the interior of the black hole, we further develop an effective metric description near the origin. To illustrate the approach, we show how to recast the information encoded in a specific model of quantum BTZ known as quBTZ black hole in terms of the effective metric coefficients.
引用
收藏
相关论文
共 50 条
  • [41] On the entropy of a quantum field in 2 + 1 dimensional spinning black holes
    Lee, M.-H.
    Kim, H.-C.
    Kim, J. K.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 388 (03):
  • [42] Thermodynamics of (2+1)-dimensional black holes in Einstein-Maxwell-dilaton gravity
    Dehghani, M.
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [43] (2+1)-dimensional dynamical black holes in Einstein-nonlinear Maxwell theory
    Gurtug, O.
    Mazharimousavi, S. Habib
    Halilsoy, M.
    MODERN PHYSICS LETTERS A, 2018, 33 (04)
  • [44] Black holes of (2+1)-dimensional f (R) gravity coupled to a scalar field
    Karakasis, Thanasis
    Papantonopoulos, Eleftherios
    Tang, Zi-Yu
    Bin Wang
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [45] Quasinormal Spectrum of (2+1)-Dimensional Asymptotically Flat, dS and AdS Black Holes
    Skvortsova, Milena
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2024, 72 (06):
  • [46] Thermodynamics of Brans-Dicke-Maxwell black holes in a (2+1)-dimensional spacetime
    Dehghani, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2025, 40 (05):
  • [47] The (2+1)-dimensional black hole
    Carlip, S
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) : 2853 - 2879
  • [48] Rotating (2+1)-dimensional black holes in Einstein-Maxwell-dilaton theory
    Karakasis, Thanasis
    Papantonopoulos, Eleftherios
    Tang, Zi-Yu
    Wang, Bin
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [49] Supermultiplets of AdS black holes in 2+1 dimensions
    Fernando, S
    Mansouri, F
    PHYSICS LETTERS B, 1998, 445 (1-2) : 52 - 59
  • [50] Black holes in 2+1 teleparallel theories of gravity
    Sousa, AA
    Maluf, JW
    PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (03): : 457 - 470