Effective metric description of 2+1 dimensional quantum black holes

被引:0
|
作者
Mattia Damia Paciarini [1 ]
Stefan Hohenegger [2 ]
Mikołaj Myszkowski [1 ]
Francesco Sannino [1 ]
机构
[1] Southern Denmark University,Quantum Theory Center (ℏQTC) & D
[2] Université Claude Bernard Lyon 1,IAS, IMADA
[3] CNRS/IN2P3,Department of Physics E. Pancini
[4] IP2I Lyon,undefined
[5] Scuola Superiore Meridionale,undefined
[6] Universit‘a di Napoli Federico II,undefined
[7] INFN Sezione di Napoli,undefined
来源
The European Physical Journal C | / 85卷 / 6期
关键词
D O I
10.1140/epjc/s10052-025-14286-8
中图分类号
学科分类号
摘要
We develop an effective metric description of 2+1 dimensional black holes describing deviations from the classical Ban̈ados–Teitelboim–Zanelli (BTZ) black hole. The latter is a classical 2+1 dimensional rotating black hole with constant negative curvature. The effective metric is constrained by imposing the black hole symmetries and asymptotic classical behavior. The deformed metric is parametrized in terms of a physical quantity that we choose to be a physical distance. The latter can be solved for in three main regions of interest, the one around the horizon, origin, and spatial infinity. The finiteness of physical quantities at the horizon, such as the Ricci and Kretschmann scalars, leads to universal constraints on the physical parameters of the metric around the horizon. This allows us to further derive the general form of the corrected Hawking temperature in terms of the physical parameters of the effective metric. Assuming that the approach can be generalized to the interior of the black hole, we further develop an effective metric description near the origin. To illustrate the approach, we show how to recast the information encoded in a specific model of quantum BTZ known as quBTZ black hole in terms of the effective metric coefficients.
引用
收藏
相关论文
共 50 条
  • [1] On the entropy of a quantum field in 2+1 dimensional spinning black holes
    Lee, MH
    Kim, HC
    Kim, JK
    PHYSICS LETTERS B, 1996, 388 (03) : 487 - 493
  • [2] Effective metric descriptions of quantum black holes
    Del Piano, Manuel
    Hohenegger, Stefan
    Sannino, Francesco
    European Physical Journal C, 2024, 84 (12):
  • [4] Critical behavior in (2+1)-dimensional black holes
    Cai, RG
    Lu, ZJ
    Zhang, YZ
    PHYSICAL REVIEW D, 1997, 55 (02): : 853 - 860
  • [5] SUPERSYMMETRY OF THE (2+1)-DIMENSIONAL BLACK-HOLES
    COUSSAERT, O
    HENNEAUX, M
    PHYSICAL REVIEW LETTERS, 1994, 72 (02) : 183 - 186
  • [6] Higher dimensional flat embeddings of (2+1)-dimensional black holes
    Hong, ST
    Kim, YW
    Park, YJ
    PHYSICAL REVIEW D, 2000, 62 (02): : 1 - 6
  • [7] Anisotropic 2+1 dimensional black holes by gravitational decoupling
    Rincon, Angel
    Contreras, Ernesto
    Tello-Ortiz, Francisco
    Bargueno, Pedro
    Abellan, Gabriel
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (06):
  • [8] Stability of the event horizon in (2+1)-dimensional black holes
    Wang, B
    Su, RK
    Yu, PKN
    Young, ECM
    PHYSICAL REVIEW D, 1996, 54 (12) : 7298 - 7302
  • [9] (2+1)-dimensional black holes in f (R,φ) gravity
    Karakasis, Thanasis
    Papantonopoulos, Eleftherios
    Tang, Zi-Yu
    Wang, Bin
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [10] Anisotropic 2+1 dimensional black holes by gravitational decoupling
    Ángel Rincón
    Ernesto Contreras
    Francisco Tello-Ortiz
    Pedro Bargueño
    Gabriel Abellán
    The European Physical Journal C, 2020, 80