Some computations for optimal execution with monotone strategies

被引:0
作者
Dolinsky, Yan [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Stat, Jerusalem, Israel
基金
以色列科学基金会;
关键词
Linear price impact; Optimal execution; Infinite horizon;
D O I
10.1016/j.sysconle.2025.106083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study an optimal execution problem in the infinite horizon setup. Our financial market is given by the Black-Scholes model with a linear price impact. The main novelty of the current note is that we study the constrained case where the number of shares and the selling rate are non-negative processes. For this case we give a complete characterization of the value and the optimal control via a solution of a non-linear ordinary differential equation (ODE). Furthermore, we provide an example where the non-linear ODE can be solved explicitly. Our approach is purely probabilistic.
引用
收藏
页数:4
相关论文
共 9 条
[1]  
Almgren R., 2000, Journal of Risk, V3, P5, DOI DOI 10.21314/JOR.2001.041
[2]  
[Anonymous], 2007, Brownian Motion and Stochastic Calculus, P451
[3]   NOISE [J].
BLACK, F .
JOURNAL OF FINANCE, 1986, 41 (03) :529-543
[4]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520
[5]  
Dufresne D., 1990, SCAND ACTUARIAL J, V1990, P39, DOI [10.1080/03461238.1990.10413872, DOI 10.1080/03461238.1990.10413872]
[6]   OPTIMAL TRADE EXECUTION UNDER GEOMETRIC BROWNIAN MOTION IN THE ALMGREN AND CHRISS FRAMEWORK [J].
Gatheral, Jim ;
Schied, Alexander .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2011, 14 (03) :353-368
[7]  
Jaber E. Abi., 2024, arXiv
[8]  
Polyanin A. D., 1995, Handbook of Exact Solutions for Ordinary Differential Equations
[9]  
Walter W., 1998, Ordinary Differential Equations