Effective viscosity of a two-dimensional passive suspension in a liquid crystal solvent

被引:0
作者
Dang, S. [1 ]
Blanch-Mercader, C. [2 ]
Berlyand, L. [3 ,4 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ PSL, Sorbonne Univ, Inst Curie, CNRS UMR168,Phys Cells & Canc, F-75005 Paris, France
[3] Penn State Univ, Dept Math, University Pk, PA USA
[4] Penn State Univ, Huck Inst Life Sci, University Pk, PA USA
关键词
BACTERIAL SUSPENSIONS; F-ACTIN; PARTICLES; FORCES; RHEOLOGY; DYNAMICS; MODEL; FLOW;
D O I
10.1140/epje/s10189-025-00479-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Suspension of particles in a fluid solvent are ubiquitous in nature, for example water mixed with sugar or bacteria self-propelling through mucus. Particles create local flow perturbations that can modify drastically the effective (homogenized) bulk properties of the fluid. Understanding the link between the properties of particles and the fluid solvent, and the effective properties of the medium is a classical problem in fluid mechanics. Here we study a special case of a two-dimensional model of a suspension of undeformable particles in a liquid crystal solvent. In the dilute regime, we calculate asymptotic solutions of the perturbations of the velocity and director fields and derive an explicit formula for an effective shear viscosity of the liquid crystal medium. Such effective shear viscosity increases linearly with the area fraction of particles, similar to Einstein formula but with a different prefactor. We provide explicit asymptotic formulas for the dependence of this prefactor on the material parameters of the solvent. Finally, we identify a case of decreasing the effective viscosity by increasing the magnitude of the shear-flow alignment coefficient of the liquid crystal solvent.
引用
收藏
页数:14
相关论文
共 60 条
[1]  
ALLAIRE G, 1991, ARCH RATION MECH AN, V113, P209, DOI [10.1007/BF00375065, 10.1007/BF00375066]
[2]   Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction [J].
Barbazan, Jorge ;
Perez-Gonzalez, Carlos ;
Gomez-Gonzalez, Manuel ;
Dedenon, Mathieu ;
Richon, Sophie ;
Latorre, Ernest ;
Serra, Marco ;
Mariani, Pascale ;
Descroix, Stephanie ;
Sens, Pierre ;
Trepat, Xavier ;
Vignjevic, Danijela Matic .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Nonequilibrium statistical mechanics of self-propelled hard rods [J].
Baskaran, Aparna ;
Marchetti, M. Cristina .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[4]   Enhanced Diffusion and Ordering of Self-Propelled Rods [J].
Baskaran, Aparna ;
Marchetti, M. Cristina .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[5]   HYDRODYNAMIC INTERACTION OF 2 SMALL FREELY-MOVING SPHERES IN A LINEAR FLOW FIELD [J].
BATCHELOR, GK ;
GREEN, JT .
JOURNAL OF FLUID MECHANICS, 1972, 56 (NOV28) :375-+
[6]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[7]  
Berlyand L., 2018, Getting acquainted with homogenization and multiscale, DOI [10.1007/978-3-030-01777-4, DOI 10.1007/978-3-030-01777-4]
[8]   Boltzmann and hydrodynamic description for self-propelled particles [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
PHYSICAL REVIEW E, 2006, 74 (02)
[9]   Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods [J].
Bertin, Eric ;
Baskaran, Aparna ;
Chate, Hugues ;
Marchetti, M. Cristina .
PHYSICAL REVIEW E, 2015, 92 (04)
[10]   Helfrich-Hurault elastic instabilities driven by geometrical frustration [J].
Blanc, Christophe ;
Durey, Guillaume ;
Kamien, Randall D. ;
Lopez-Leon, Teresa ;
Lavrentovich, Maxim O. ;
Tran, Lisa .
REVIEWS OF MODERN PHYSICS, 2023, 95 (01)