Curvatures of measure-preserving diffeomorphism groups of non-orientable surfaces

被引:0
作者
Khesin, Boris [1 ]
Langoen, Rene [2 ]
Markina, Irina [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] Univ Bergen, Dept Math, Bergen, Norway
基金
加拿大自然科学与工程研究理事会;
关键词
non-orientable manifold; diffeomorphism group; sectional curvature; Euler equation; infinite-dimensional Lie group; totally geodesic submanifold; DES GROUPES;
D O I
10.1088/1361-6544/adc968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study curvatures of the groups of measure-preserving diffeomorphisms of non-orientable compact surfaces. For the cases of the Klein bottle and the real projective plane we compute curvatures, their asymptotics and the normalised Ricci curvatures in many directions. Extending the approach of Arnold and Lukatskii we provide estimates of weather unpredictability for natural models of trade wind currents on the Klein bottle and the projective plane.
引用
收藏
页数:38
相关论文
共 16 条