Advances in AI-based strategies and tools to facilitate natural product and drug development

被引:3
作者
Basnet, Buddha Bahadur [1 ,2 ]
Zhou, Zhen-Yi [1 ]
Wei, Bin [1 ]
Wang, Hong [1 ,3 ]
机构
[1] Zhejiang Univ Technol, Coll Pharmaceut Sci, Hangzhou, Peoples R China
[2] Tribhuvan Univ, Cent Dept Biotechnol, Kathmandu, Nepal
[3] Zhejiang Univ Technol, Utilizat Zhejiang Prov, Key Lab Marine Fishery Resources Exploitment, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Natural products; natural product drug discovery; artificial intelligence; dereplication; (bio/chemo) informatics tools; metabolomics; NAIVE BAYESIAN CLASSIFICATION; MACHINE LEARNING-MODEL; MASS-SPECTROMETRY DATA; METABOLITE IDENTIFICATION; STRUCTURE ELUCIDATION; WEB SERVER; MOLECULAR NETWORKING; NEURAL-NETWORKS; NMR DATA; MS/MS FRAGMENTATION;
D O I
10.1080/07388551.2025.2478094
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Natural products and their derivatives have been important for treating diseases in humans, animals, and plants. However, discovering new structures from natural sources is still challenging. In recent years, artificial intelligence (AI) has greatly aided the discovery and development of natural products and drugs. AI facilitates to: connect genetic data to chemical structures or vice-versa, repurpose known natural products, predict metabolic pathways, and design and optimize metabolites biosynthesis. More recently, the emergence and improvement in neural networks such as deep learning and ensemble automated web based bioinformatics platforms have sped up the discovery process. Meanwhile, AI also improves the identification and structure elucidation of unknown compounds from raw data like mass spectrometry and nuclear magnetic resonance. This article reviews these AI-driven methods and tools, highlighting their practical applications and guide for efficient natural product discovery and drug development.
引用
收藏
页数:32
相关论文
共 348 条
[1]   Turbo prediction: a new approach for bioactivity prediction [J].
Abdo, Ammar ;
Pupin, Maude .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (01) :77-85
[2]   Computational identification of natural product inhibitors against EGFR double mutant (T790M/L858R) by integrating ADMET, machine learning, molecular docking and a dynamics approach [J].
Agarwal, Subhash M. ;
Nandekar, Prajwal ;
Saini, Ravi .
RSC ADVANCES, 2022, 12 (26) :16779-16789
[3]   RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining [J].
Agrawal, Priyesh ;
Amir, Sana ;
Deepak ;
Barua, Drishtee ;
Mohanty, Debasisa .
JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (11)
[4]   iMet: A Network-Based Computational Tool To Assist in the Annotation of Metabolites from Tandem Mass Spectra [J].
Aguilar-Mogas, Antoni ;
Sales-Pardo, Marta ;
Navarro, Miriam ;
Guimera, Roger ;
Yanes, Oscar .
ANALYTICAL CHEMISTRY, 2017, 89 (06) :3474-3482
[5]   A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL) [J].
Alberga, Domenico ;
Trisciuzzi, Daniela ;
Montaruli, Michele ;
Leonetti, Francesco ;
Mangiatordi, Giuseppe Felice ;
Nicolotti, Orazio .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (01) :586-596
[6]   Biologically Consistent Annotation of Metabolomics Data [J].
Alden, Nicholas ;
Krishnan, Smitha ;
Porokhin, Vladimir ;
Raju, Ravali ;
McElearney, Kyle ;
Gilbert, Alan ;
Lee, Kyongbum .
ANALYTICAL CHEMISTRY, 2017, 89 (24) :13097-13104
[7]   Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication [J].
Allard, Pierre-Marie ;
Peresse, Tiphaine ;
Bisson, Jonathan ;
Gindro, Katia ;
Marcourt, Laurence ;
Van Cuong Pham ;
Roussi, Fanny ;
Litaudon, Marc ;
Wolfender, Jean-Luc .
ANALYTICAL CHEMISTRY, 2016, 88 (06) :3317-3323
[8]   Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures [J].
Anderton, Christopher R. ;
Chu, Rosalie K. ;
Tolic, Nikola ;
Creissen, Alain ;
Pasa-Tolic, Ljiljana .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (03) :556-559
[9]  
Aries F, 2016, P 2016 6 INT WORKSH
[10]   Reproducible molecular networking of untargeted mass spectrometry data using GNPS [J].
Aron, Allegra T. ;
Gentry, Emily C. ;
McPhail, Kerry L. ;
Nothias, Louis-Felix ;
Nothias-Esposito, Melissa ;
Bouslimani, Amina ;
Petras, Daniel ;
Gauglitz, Julia M. ;
Sikora, Nicole ;
Vargas, Fernando ;
van Der Hooft, Justin J. J. ;
Ernst, Madeleine ;
Bin Kang, Kyo ;
Aceves, Christine M. ;
Caraballo-Rodriguez, Andres Mauricio ;
Koester, Irina ;
Weldon, Kelly C. ;
Bertrand, Samuel ;
Roullier, Catherine ;
Sun, Kunyang ;
Tehan, Richard M. ;
Boya P, Cristopher A. ;
Christian, Martin H. ;
Gutierrez, Marcelino ;
Ulloa, Aldo Moreno ;
Mora, Javier Andres Tejeda ;
Mojica-Flores, Randy ;
Lakey-Beitia, Johant ;
Vasquez-Chaves, Victor ;
Zhang, Yilue ;
Calderon, Angela, I ;
Tayler, Nicole ;
Keyzers, Robert A. ;
Tugizimana, Fidele ;
Ndlovu, Nombuso ;
Aksenov, Alexander A. ;
Jarmusch, Alan K. ;
Schmid, Robin ;
Truman, Andrew W. ;
Bandeira, Nuno ;
Wang, Mingxun ;
Dorrestein, Pieter C. .
NATURE PROTOCOLS, 2020, 15 (06) :1954-1991