Rational transformations over finite fields that are never irreducible

被引:0
作者
Schulz, Max [1 ]
机构
[1] Univ Rostock, Inst Math, Rostock, Germany
关键词
Rational transformation; Irreducible polynomials; Group action; Projective general linear group; POLYNOMIALS;
D O I
10.1007/s10623-025-01591-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Rational transformations play an important role in the construction of irreducible polynomials over finite fields. Usually, the methods involve fixing a rational function Q and deriving conditions on polynomials F is an element of Fq[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in \mathbb {F}_q[x]$$\end{document} such that the rational transformation of F with Q is irreducible. Here we want to change the perspective and study rational functions with which the rational transformation never yields irreducible polynomials. We show that if the rational function is contained in certain subfields of Fq(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q(x)$$\end{document} then the rational transformation with it is always reducible. This extends the list of known examples.
引用
收藏
页数:15
相关论文
共 32 条
  • [1] Recursive constructions of irreducible polynomials over finite fields
    Abrahamyan, Sergey
    Alizadeh, Mahmood
    Kyureghyan, Melsik K.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 738 - 745
  • [2] AGOU S, 1977, J REINE ANGEW MATH, V292, P191
  • [3] IRREDUCIBILITY OF POLYNOMIALS F(XP2R-AXPR-BX) ON FINITE BODY FPS
    AGOU, S
    [J]. JOURNAL OF NUMBER THEORY, 1978, 10 (01) : 64 - 69
  • [4] Agou S., 1980, Can. Math. Bull, V23, P207, DOI [10.4153/CMB-1980-028-7, DOI 10.4153/CMB-1980-028-7]
  • [5] Generalization of a theorem of Carlitz
    Ahmadi, Omran
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (05) : 473 - 480
  • [6] Albert AA, 1956, Fundamental Concepts of Higher Algebra
  • [7] The R-transform as power map and its generalizations to higher degree
    Bassa, Alp
    Menares, Ricardo
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2025, 102
  • [8] Explicit Artin maps into PGL2
    Bluher, Antonia W.
    [J]. EXPOSITIONES MATHEMATICAE, 2022, 40 (01) : 45 - 93
  • [9] On the reducibility of some composite polynomials over finite fields
    Cao, Xiwang
    Hu, Lei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2012, 64 (03) : 229 - 239
  • [10] Chapman R., 1997, Finite Fields Appl, V3, P1