Neural Network Atomistic Potential for Pyrophyllite Clay Simulations
被引:0
作者:
Sanz, Chloe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, FranceUniv Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, France
Sanz, Chloe
[1
]
Allouche, Abdul-Rahman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, FranceUniv Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, France
Allouche, Abdul-Rahman
[1
]
Bousige, Colin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, CNRS, UMR 5615, Lab Multimateriaux & Interfaces, F-69100 Villeurbanne, FranceUniv Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, France
Bousige, Colin
[2
]
Mignon, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, FranceUniv Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, France
Mignon, Pierre
[1
]
机构:
[1] Univ Claude Bernard Lyon 1, CNRS, UMR 5306, Inst Lumiere Matiere, F-69100 Villeurbanne, France
[2] Univ Claude Bernard Lyon 1, CNRS, UMR 5615, Lab Multimateriaux & Interfaces, F-69100 Villeurbanne, France
In this study, a high-dimensional neural network potential for the smectite pyrophyllite clay has been developed from density functional theory (DFT) data, including correction for dispersion interactions. The data set has been built from the adaptive learning approach, resulting in a diverse and very concise set of selected structures comprising only representative ones. Two neural network potential (NNP) data sets have been constituted from sets of energies and forces computed at two different levels of DFT accuracy. Validation tests show very good accuracy for the computed energies and forces of various systems differing by their size and simulation conditions. The developed potentials are able to reproduce structural parameters with excellent agreement with DFT values as well as experimental data and are the first NNPS able to reproduce clay layers' properties held together via van der Waals interactions. The NNP constructed from data of higher DFT levels shows better results for extreme condition simulations. In addition, elastic properties, exfoliation energies, and vibrational density of state are also well reproduced, showing better performances than standard force fields at a fraction of DFT computation time.
机构:
Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Mississippi State Univ Starkville, Ctr Adv Vehicular Syst, Starkville, MS 39759 USAMississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Nitol, Mashroor S.
Dickel, Doyl E.
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Mississippi State Univ Starkville, Ctr Adv Vehicular Syst, Starkville, MS 39759 USAMississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Dickel, Doyl E.
Barrett, Christopher D.
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Mississippi State Univ Starkville, Ctr Adv Vehicular Syst, Starkville, MS 39759 USAMississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
机构:
Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Mississippi State Univ Starkville, Ctr Adv Vehicular Syst, Starkville, MS 39759 USAMississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Nitol, Mashroor S.
Dickel, Doyl E.
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Mississippi State Univ Starkville, Ctr Adv Vehicular Syst, Starkville, MS 39759 USAMississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Dickel, Doyl E.
Barrett, Christopher D.
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
Mississippi State Univ Starkville, Ctr Adv Vehicular Syst, Starkville, MS 39759 USAMississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA