On almost periodic solutions of the parabolic-elliptic Keller-Segel system on real hyperbolic manifold

被引:0
作者
Thuy, Tran Van [1 ]
机构
[1] East Asia Univ Technol, Hanoi, Vietnam
关键词
Keller-Segel system; Dispersive estimate; Smoothing estimate; Almost periodic solution; Exponential stability; NAVIER-STOKES EQUATIONS; HEAT KERNEL; RIESZ TRANSFORM; UNIQUENESS; EXISTENCE;
D O I
10.1007/s13324-025-01073-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we will study the existence, uniqueness and exponential stability of almost periodic solutions to the parabolic-elliptic Keller-Segel system on a real hyperbolic manifold. We clarify the existence and uniqueness of such solutions of the linear equation by utilizing the dispersive and smoothing estimates of the heat semigroup. Thereafter, we use the fixed point arguments to investigate for the case of the semi-linear equation by utilizing the results of the linear case. Finally, we invoke the Gronwall's inequality to point out the exponential stability.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Heat kernel and green function estimates on noncompact symmetric spaces [J].
Anker, JP ;
Ji, L .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (06) :1035-1091
[2]   Keller-Segel Chemotaxis Models: A Review [J].
Arumugam, Gurusamy ;
Tyagi, Jagmohan .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[3]   Riesz transform on manifolds and heat kernel regularity [J].
Auscher, P ;
Coulhon, T ;
Duong, XT ;
Hofmann, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06) :911-957
[4]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[5]  
Besicovitch A.S., 1954, Almost Periodic Functions
[6]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[8]  
Bohr H, 1924, ACTA MATH-DJURSHOLM, V45, P29
[10]  
Bohr H., 1926, ACTA MATH, V47, P237, DOI DOI 10.1007/BF02543846