Ground state solution for a generalized Choquard Schro¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\text {o}}$$\end{document}dinger equation with vanishing potential in homogeneous fractional Musielak Sobolev spacesGround state solution for a generalized ChoquardS. Gupta , G. Dwivedi

被引:0
作者
Shilpa Gupta [1 ]
Gaurav Dwivedi [2 ]
机构
[1] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
[2] Birla Institute of Technology and Science Pilani,Department of Mathematics
关键词
Variational methods; Choquard equation; Fractional Musielak Sobolev spaces; Vanishing potential; Hardy–Littlewood–Sobolev inequality; 26A33; 35J20; 35J62;
D O I
10.1007/s13540-025-00411-7
中图分类号
学科分类号
摘要
This paper aims to establish the existence of a weak solution for the following problem: (-Δ)Hsu(x)+V(x)h(x,x,|u|)u(x)=∫RNK(y)F(u(y))|x-y|λdyK(x)f(u(x)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^{s}_{\mathcal {H}}u(x) +V(x)h(x,x,|u|)u(x)=\left( \int _{{\mathbb R}^{N}}\dfrac{K(y)F(u(y))}{|x-y|^\lambda }\,\textrm{d}y\right) K(x)f(u(x)), \end{aligned}$$\end{document}in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^{N}$$\end{document} where N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}, s∈(0,1),λ∈(0,N),H(x,y,t)=∫0|t|h(x,y,r)rdr,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1), \lambda \in (0,N), \mathcal {H}(x,y,t)=\int _{0}^{|t|} h(x,y,r)r\ dr,$$\end{document}h:RN×RN×[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ h:{\mathbb R}^{N}\times {\mathbb R}^{N}\times [0,\infty )\rightarrow [0,\infty )$$\end{document} is a generalized N-function and (-Δ)Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}_{\mathcal {H}}$$\end{document} is a generalized fractional Laplace operator. The functions V,K:RN→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V,K:{\mathbb R}^{N}\rightarrow (0,\infty )$$\end{document}, non-linear function f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb R}\rightarrow {\mathbb R}$$\end{document} are continuous and F(t)=∫0tf(r)dr.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F(t)=\int _{0}^{t}f(r)dr.$$\end{document} First, we introduce the homogeneous fractional Musielak–Sobolev space and investigate their properties. After that, we pose the given problem in that space. To establish our existence results, we use variational technique based on the mountain pass theorem. We also prove the existence of a ground state solution by the method of Nehari manifold.
引用
收藏
页码:1476 / 1502
页数:26
相关论文
empty
未找到相关数据