Using Real-World Data for Machine-Learning Algorithms to Predict the Treatment Response in Advanced Melanoma: A Pilot Study for Personalizing Cancer Care

被引:2
作者
Brohet, Richard M. [1 ]
de Boer, Elianne C. S. [2 ]
Mossink, Joram M. [1 ]
van der Eerden, Joni J. N. [1 ]
Oostmeyer, Alexander [1 ]
Idzerda, Luuk H. W. [1 ]
Maring, Jan Gerard [3 ]
Paardekooper, Gabriel M. R. M. [4 ]
Beld, Michel [5 ]
Lijffijt, Fiona [6 ]
Dille, Joep [7 ]
de Groot, Jan Willem B. [2 ]
机构
[1] Isala, Dept Innovat & Sci, Div Data Sci, Zwolle, Netherlands
[2] Isala, Dept Oncol Ctr, Zwolle, Netherlands
[3] Isala, Dept Clin Pharm, Zwolle, Netherlands
[4] Isala, Dept Radiotherapy, Zwolle, Netherlands
[5] Isala, Dept Business Intelligence, Zwolle, Netherlands
[6] Isala, Dept Med Eth & Legal Affairs, Zwolle, Netherlands
[7] Isala, Dept Innovat & Sci, Zwolle, Netherlands
关键词
METASTATIC MELANOMA; IMMUNOTHERAPY; SURVIVAL; OUTCOMES; THERAPY; MODELS;
D O I
10.1200/CCI-24-00181
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSEThe use of real-world data (RWD) in oncology is becoming increasingly important for clinical decision making and tailoring treatment. Despite the significant success of targeted therapy and immunotherapy in advanced melanoma, substantial variability in clinical responses to these treatments emphasizes the need for personalized approaches to therapy.MATERIALS AND METHODSIn this pilot study, 239 patients with melanoma were included to predict the response to both targeted therapies and immunotherapies. We used machine learning (ML) to incorporate RWD and applied explainable artificial intelligence (XAI) to explain the individual predictions.RESULTSWe developed, validated, and compared four ML models to evaluate 2-year survival using RWD. Our research showed encouraging outcomes, achieving an AUC of more than 80% and an estimated accuracy of over 74% across the four ML models. The random forest model exhibited the highest performance in predicting 2-year survival with an AUC of 0.85. Local interpretable model-agnostic explanations was used to explain individual predictions and provide trust and insights into the clinical implications of the ML model.CONCLUSIONWith this proof-of-concept, we integrated RWD into predictive modeling using ML techniques to predict clinical outcomes and explore their potential implications for clinical decision making. The potential of XAI was demonstrated to enhance trust and improve the usability of the model in clinical settings. Further research, including foundation modeling and generative AI, will likely increase the predictive power of prognostic and predictive ML models in advanced melanoma.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Real-World Study of Treatment with Pembrolizumab Among Patients with Advanced Urothelial Tract Cancer in Denmark [J].
Omland, Lise Hoj ;
Stormoen, Dag Rune ;
Dohn, Line Hammer ;
Carus, Andreas ;
Als, Anne Birgitte ;
Jensen, Niels Viggo ;
Taarnhoj, Gry Assam ;
Tolver, Anders ;
Pappot, Helle .
BLADDER CANCER, 2021, 7 (04) :413-425
[22]   Direct Medical Costs of Advanced Breast Cancer Treatment: A Real-World Study in the Southeast of The Netherlands [J].
Schneider, Paul Peter ;
Ramaekers, Bram L. ;
Pouwels, Xavier ;
Geurts, Sandra ;
Ibragimova, Khava ;
de Boer, Maaike ;
Vriens, Birgit ;
van de Wouw, Yes ;
den Boer, Marien ;
Pepels, Manon ;
Tjan-Heijnen, Vivianne ;
Joore, Manuela .
VALUE IN HEALTH, 2021, 24 (05) :668-675
[23]   Characteristics and outcomes of advanced melanoma patients with complete response and elective discontinuation of first-line anti-programmed death-1 monotherapy: A real-world multicentre observational cohort study [J].
Ochenduszko, Sebastian ;
Sanchez, Javier Garcia ;
Juan Fita, Maria Jose ;
Gonzalez-Barrallo, Ines ;
Herrero Colomina, Julio ;
Mujika, Karmele ;
Diaz Beveridge, Roberto ;
Ros Martinez, Silverio ;
Sanchez Lafuente, Blanca ;
Cunquero Tomas, Alberto ;
Berrocal Jaime, Alfonso ;
Cerezuela Fuentes, Pablo ;
Luna Fra, Pablo ;
Gervas Peeters, Alicia ;
Meana Garcia, Jose Andres ;
Algarra Garcia, Maria Asuncion ;
Perez Altozano, Javier ;
Cancela, Maria ;
Mateu Puchades, Almudena ;
Ferrando Roca, Francisco ;
Maestu Maiques, Inmaculada .
PIGMENT CELL & MELANOMA RESEARCH, 2023, 36 (05) :388-398
[24]   Real-world treatment patterns and clinical outcomes among patients with advanced melanoma A retrospective, community oncology-based cohort study (A STROBE-compliant article) [J].
Cowey, C. Lance ;
Liu, Frank Xiaoqing ;
Boyd, Marley ;
Aguilar, Kathleen M. ;
Krepler, Clemens .
MEDICINE, 2019, 98 (28)
[25]   Value of machine learning algorithms for predicting diabetes risk: A subset analysis from a real-world retrospective cohort study [J].
Mao, Yaqian ;
Zhu, Zheng ;
Pan, Shuyao ;
Lin, Wei ;
Liang, Jixing ;
Huang, Huibin ;
Li, Liantao ;
Wen, Junping ;
Chen, Gang .
JOURNAL OF DIABETES INVESTIGATION, 2023, 14 (02) :309-320
[26]   Predicting survival benefits of immune checkpoint inhibitor therapy in lung cancer patients: a machine learning approach using real-world data [J].
Pan, Lingyun ;
Mu, Li ;
Lei, Haike ;
Miao, Siwei ;
Hu, Xiaogang ;
Tang, Zongwei ;
Chen, Wanyi ;
Wang, Xiaoxiao .
INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2024,
[27]   Real-World Data of Trastuzumab Deruxtecan for Advanced Gastric Cancer: A Multi-Institutional Retrospective Study [J].
Matsumoto, Toshihiko ;
Yamamura, Shogo ;
Ikoma, Tatsuki ;
Kurioka, Yusuke ;
Doi, Keitaro ;
Boku, Shogen ;
Shibata, Nobuhiro ;
Nagai, Hiroki ;
Shimada, Takanobu ;
Tsuduki, Takao ;
Tsumura, Takehiko ;
Takatani, Masahiro ;
Yasui, Hisateru ;
Satake, Hironaga .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (08)
[28]   Machine-learning prediction of treatment response to stereotactic body radiation therapy in oligometastatic gynecological cancer: A multi-institutional study [J].
Cilla, Savino ;
Campitelli, Maura ;
Gambacorta, Maria Antonietta ;
Rinaldi, Raffaella Michela ;
Deodato, Francesco ;
Pezzulla, Donato ;
Romano, Carmela ;
Fodor, Andrei ;
Laliscia, Concetta ;
Trippa, Fabio ;
De Sanctis, Vitaliana ;
Ippolito, Edy ;
Ferioli, Martina ;
Titone, Francesca ;
Russo, Donatella ;
Balcet, Vittoria ;
Vicenzi, Lisa ;
Di Cataldo, Vanessa ;
Raguso, Arcangela ;
Morganti, Alessio Giuseppe ;
Ferrandina, Gabriella ;
Macchia, Gabriella .
RADIOTHERAPY AND ONCOLOGY, 2024, 191
[29]   Considerations to forgo systemic treatment in patients with advanced esophageal or gastric cancer: A real-world evidence study [J].
Slotman, Ellis ;
Pape, Marieke ;
van Laarhoven, Hanneke W. M. ;
Pouw, Roos E. ;
van Der Linden, Yvette M. ;
Verhoeven, Rob H. A. ;
Siesling, Sabine ;
Fransen, Heidi P. ;
Raijmakers, Natasja J. H. .
INTERNATIONAL JOURNAL OF CANCER, 2025, 156 (10) :1950-1960
[30]   Implementing treatment according to the guidelines is of paramount importance in locally advanced cervical cancer: a real-world study [J].
Jaaskelainen, Ester ;
Karkkainen, Henna ;
Palmgren, Jan-Erik ;
Haataja, Marjut ;
Hinkula, Marianne ;
Anttila, Maarit .
FRONTIERS IN ONCOLOGY, 2025, 15