Using Real-World Data for Machine-Learning Algorithms to Predict the Treatment Response in Advanced Melanoma: A Pilot Study for Personalizing Cancer Care

被引:2
作者
Brohet, Richard M. [1 ]
de Boer, Elianne C. S. [2 ]
Mossink, Joram M. [1 ]
van der Eerden, Joni J. N. [1 ]
Oostmeyer, Alexander [1 ]
Idzerda, Luuk H. W. [1 ]
Maring, Jan Gerard [3 ]
Paardekooper, Gabriel M. R. M. [4 ]
Beld, Michel [5 ]
Lijffijt, Fiona [6 ]
Dille, Joep [7 ]
de Groot, Jan Willem B. [2 ]
机构
[1] Isala, Dept Innovat & Sci, Div Data Sci, Zwolle, Netherlands
[2] Isala, Dept Oncol Ctr, Zwolle, Netherlands
[3] Isala, Dept Clin Pharm, Zwolle, Netherlands
[4] Isala, Dept Radiotherapy, Zwolle, Netherlands
[5] Isala, Dept Business Intelligence, Zwolle, Netherlands
[6] Isala, Dept Med Eth & Legal Affairs, Zwolle, Netherlands
[7] Isala, Dept Innovat & Sci, Zwolle, Netherlands
关键词
METASTATIC MELANOMA; IMMUNOTHERAPY; SURVIVAL; OUTCOMES; THERAPY; MODELS;
D O I
10.1200/CCI-24-00181
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSEThe use of real-world data (RWD) in oncology is becoming increasingly important for clinical decision making and tailoring treatment. Despite the significant success of targeted therapy and immunotherapy in advanced melanoma, substantial variability in clinical responses to these treatments emphasizes the need for personalized approaches to therapy.MATERIALS AND METHODSIn this pilot study, 239 patients with melanoma were included to predict the response to both targeted therapies and immunotherapies. We used machine learning (ML) to incorporate RWD and applied explainable artificial intelligence (XAI) to explain the individual predictions.RESULTSWe developed, validated, and compared four ML models to evaluate 2-year survival using RWD. Our research showed encouraging outcomes, achieving an AUC of more than 80% and an estimated accuracy of over 74% across the four ML models. The random forest model exhibited the highest performance in predicting 2-year survival with an AUC of 0.85. Local interpretable model-agnostic explanations was used to explain individual predictions and provide trust and insights into the clinical implications of the ML model.CONCLUSIONWith this proof-of-concept, we integrated RWD into predictive modeling using ML techniques to predict clinical outcomes and explore their potential implications for clinical decision making. The potential of XAI was demonstrated to enhance trust and improve the usability of the model in clinical settings. Further research, including foundation modeling and generative AI, will likely increase the predictive power of prognostic and predictive ML models in advanced melanoma.
引用
收藏
页数:12
相关论文
共 50 条
[11]   Multimodal treatment and immune checkpoint inhibition in sinonasal mucosal melanoma: real-world data of a retrospective, single-center study [J].
Scherzad, Agmal ;
Stoeth, Manuel ;
Meyer, Till J. ;
Haug, Lukas ;
Gehrke, Thomas ;
Schilling, Bastian ;
Meierjohann, Svenja ;
Scheich, Matthias ;
Hagen, Rudolf ;
Gesierich, Anja ;
Hackenberg, Stephan .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (09) :4215-4223
[12]   Machine Learning Prediction of Early Recurrence in Gastric Cancer: A Nationwide Real-World Study [J].
Zhang, Xing-Qi ;
Huang, Ze-Ning ;
Wu, Ju ;
Liu, Xiao-Dong ;
Xie, Rong-Zhen ;
Wu, Ying-Xin ;
Zheng, Chang-Yue ;
Zheng, Chao-Hui ;
Li, Ping ;
Xie, Jian-Wei ;
Wang, Jia-Bin ;
He, Qi-Chen ;
Qiu, Wen-Wu ;
Tang, Yi-Hui ;
Zhang, Hao-Xiang ;
Zhou, Yan-Bing ;
Lin, Jian-Xian ;
Huang, Chang-Ming .
ANNALS OF SURGICAL ONCOLOGY, 2025, 32 (04) :2637-2650
[13]   A real-world, population-based study of patterns of referral, treatment, and outcomes for advanced pancreatic cancer [J].
Abdel-Rahman, Omar ;
Xu, Yuan ;
Tang, Patricia A. ;
Lee-Ying, Richard M. ;
Cheung, Winson Y. .
CANCER MEDICINE, 2018, 7 (12) :6385-6392
[14]   The real-world study of the clinical characteristics, diagnosis, and treatment of advanced pancreatic cancer in China [J].
Cui, Jiujie ;
Fu, Qihan ;
Chen, Xiaobing ;
Wang, Yanling ;
Li, Qi ;
Wang, Feng ;
Li, Zhihua ;
Dai, Guanghai ;
Wang, Yusheng ;
Zhang, Hongmei ;
Liang, Houjie ;
Zhou, Jun ;
Yang, Liu ;
Wang, Fenghua ;
Zheng, Leizhen ;
Chen, Xiaofeng ;
Gong, Ping ;
Liu, Jiang ;
Yuan, Ying ;
Wang, Lin ;
Cheng, Yuejuan ;
Zhang, Jun ;
Zhou, Yuhong ;
Guo, Weijian ;
Zhan, Xianbao ;
Zou, Zhengyun ;
Li, Da ;
Zeng, Shan ;
Li, Enxiao ;
Li, Zhiwei ;
Teng, Zan ;
Cao, Dan ;
Kan, Jie ;
Xiong, Jianping ;
Quan, Ming ;
Yao, Jiayu ;
Yang, Haiyan ;
Wang, Liwei .
JOURNAL OF PANCREATOLOGY, 2024, 7 (01) :1-9
[15]   Using Primary Care Data to Report Real-World Pancreatic Cancer Survival and Symptomatology [J].
Jeffreys, Nathan ;
Dambha-Miller, Hajira ;
Fan, Xuejuan ;
Ferreira, Filipa ;
Liyanage, Harshana ;
Sherlock, Julian ;
Williams, John ;
Rice, Rebecca ;
Stunt, Ali ;
Faithfull, Sara ;
Gatenby, Piers ;
Lemanska, Agnieszka ;
de Lusignan, Simon .
PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 :168-172
[16]   Leveraging large, real-world data through machine-learning to increase efficiency in robotic-assisted total knee arthroplasty [J].
Witvoet, Sietske ;
de Massari, Daniele ;
Shi, Sarah ;
Chen, Antonia F. F. .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2023, 31 (08) :3160-3171
[17]   Treatment patterns of prostate cancer with bone metastasis in Beijing: A real-world study using data from an administrative claims database [J].
Cheng, Yinchu ;
Zhuo, Lin ;
Pan, Yuting ;
Wang, Shengfeng ;
Zong, Jihong ;
Sun, Wentao ;
Gao, Shuangqing ;
Lu, Jian ;
Zhan, Siyan .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 (11) :1501-1509
[18]   Real-World Treatment Patterns, Survival, and Costs for Ovarian Cancer in Canada: A Retrospective Cohort Study Using Provincial Administrative Data [J].
Hurry, Manjusha ;
Hassan, Shazia ;
Seung, Soo Jin ;
Walton, Ryan N. ;
Elnoursi, Ashlie ;
Mcgee, Jacob D. .
JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH, 2021, 8 (02) :114-121
[19]   Impact of performance status on treatment outcomes: A real-world study of advanced urothelial cancer treated with checkpoint inhibitors [J].
Khaki, Ali Raza ;
Li, Ang ;
Diamantopoulos, Leonidas N. ;
Bilen, Mehmet A. ;
Santos, Victor ;
Esther, John ;
Morales-Barrera, Rafael ;
Devitt, Michael ;
Nelson, Ariel ;
Hoimes, Christopher J. ;
Shreck, Evan ;
Assi, Hussein ;
Gartrell, Benjamin A. ;
Sankin, Alex ;
Rodriguez-Vida, Alejo ;
Lythgoe, Mark ;
Pinato, David J. ;
Drakaki, Alexandra ;
Joshi, Monika ;
Isaacsson Velho, Pedro ;
Hahn, Noah ;
Liu, Sandy ;
Alonso Buznego, Lucia ;
Duran, Ignacio ;
Moses, Marcus ;
Jain, Jayanshu ;
Murgic, Jure ;
Baratam, Praneeth ;
Barata, Pedro ;
Tripathi, Abhishek ;
Zakharia, Yousef ;
Galsky, Matthew D. ;
Sonpavde, Guru ;
Yu, Evan Y. ;
Shankaran, Veena ;
Lyman, Gary H. ;
Grivas, Petros .
CANCER, 2020, 126 (06) :1208-1216
[20]   Nomogram-based parameters to predict overall survival in a real-world advanced cancer population undergoing palliative care [J].
Zhao, Weiwei ;
He, Zhiyong ;
Li, Yintao ;
Jia, Huixun ;
Chen, Menglei ;
Gu, Xiaoli ;
Liu, Minghui ;
Zhang, Zhe ;
Wu, Zhenyu ;
Cheng, Wenwu .
BMC PALLIATIVE CARE, 2019, 18 (1)