Emerging roles for fatty acid oxidation in cancer

被引:0
作者
Ma, Jialin [1 ,2 ]
Wang, Shuxian [1 ]
Zhang, Pingfeng [1 ]
Zheng, Sihao [1 ]
Li, Xiangpan [1 ]
Li, Juanjuan [3 ]
Pei, Huadong [2 ]
机构
[1] Wuhan Univ, Renmin Hosp, Canc Ctr, Wuhan 430060, Hubei, Peoples R China
[2] Georgetown Univ, Georgetown Lombardi Comprehens Canc Ctr, Dept Oncol, Med Ctr, Washington, DC 20057 USA
[3] Wuhan Univ, Dept Breast & Thyroid Surg, Renmin Hosp, Wuhan 430060, Hubei, Peoples R China
关键词
Cancer progression; Drug resistance; Fatty acid oxidation; Metabolism reprogramming; Oncotherapy; BETA-OXIDATION; CARNITINE PALMITOYLTRANSFERASE; METABOLIC SWITCH; PYRUVATE-KINASE; CELL SURVIVAL; INHIBITION; MITOCHONDRIAL; HOMEOSTASIS; RESISTANCE; CARCINOMA;
D O I
10.1016/j.gendis.2024.101491
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape. (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 169 条
[121]   Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy [J].
Tan, Zheqiong ;
Xiao, Lanbo ;
Tang, Min ;
Bai, Fang ;
Li, Jiangjiang ;
Li, Liling ;
Shi, Feng ;
Li, Namei ;
Li, Yueshuo ;
Du, Qianqian ;
Lu, Jingchen ;
Weng, Xinxian ;
Yi, Wei ;
Zhang, Hanwen ;
Fan, Jia ;
Zhou, Jian ;
Gao, Qiang ;
Onuchic, Jose N. ;
Bode, Ann M. ;
Luo, Xiangjian ;
Cao, Ya .
THERANOSTICS, 2018, 8 (09) :2329-2347
[122]   CPT1A-mediated fatty acid oxidation promotes cell proliferation via nucleoside metabolism in nasopharyngeal carcinoma [J].
Tang, Min ;
Dong, Xin ;
Xiao, Lanbo ;
Tan, Zheqiong ;
Luo, Xiangjian ;
Yang, Lifang ;
Li, Wei ;
Shi, Feng ;
Li, Yueshuo ;
Zhao, Lin ;
Liu, Na ;
Du, Qianqian ;
Xie, Longlong ;
Hu, Jianmin ;
Weng, Xinxian ;
Fan, Jia ;
Zhou, Jian ;
Gao, Qiang ;
Wu, Weizhong ;
Zhang, Xin ;
Liao, Weihua ;
Bode, Ann M. ;
Cao, Ya .
CELL DEATH & DISEASE, 2022, 13 (04)
[123]   Very long chain fatty acid metabolism is required in acute myeloid leukemia [J].
Tcheng, Matthew ;
Roma, Alessia ;
Ahmed, Nawaz ;
Smith, Richard W. ;
Jayanth, Preethi ;
Minden, Mark D. ;
Schimmer, Aaron D. ;
Hess, David A. ;
Hope, Kristin ;
Rea, Kevin A. ;
Akhtar, Tariq A. ;
Bohmsen, Eric ;
D'Alessandro, Angelo ;
Mohsen, Al-Walid ;
Vockley, Jerry ;
Spagnuolo, Paul A. .
BLOOD, 2021, 137 (25) :3518-3532
[124]   ACLY ubiquitination by CUL3-KLHL25 induces the reprogramming of fatty acid metabolism to facilitate iTreg differentiation [J].
Tian, Miaomiao ;
Hao, Fengqi ;
Jin, Xin ;
Sun, Xue ;
Jiang, Ying ;
Wang, Yang ;
Li, Dan ;
Chang, Tianyi ;
Zou, Yingying ;
Peng, Pinghui ;
Xia, Chaoyi ;
Liu, Jia ;
Li, Yuanxi ;
Wang, Ping ;
Feng, Yunpeng ;
Wei, Min .
ELIFE, 2021, 10
[125]   AMPK: restoring metabolic homeostasis over space and time [J].
Trefts, Elijah ;
Shaw, Reuben J. .
MOLECULAR CELL, 2021, 81 (18) :3677-3690
[126]   Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation [J].
Tsai, Yu-Ting ;
Lo, Wei-Lun ;
Chen, Pin-Yuan ;
Ko, Chiung-Yuan ;
Chuang, Jian-Ying ;
Kao, Tzu-Jen ;
Yang, Wen-Bing ;
Chang, Kwang-Yu ;
Hung, Chia-Yang ;
Kikkawa, Ushio ;
Chang, Wen-Chang ;
Hsu, Tsung-, I .
JOURNAL OF BIOMEDICAL SCIENCE, 2022, 29 (01)
[127]   PPARα and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia [J].
Tung, Stephanie ;
Shi, Yonghong ;
Wong, Karry ;
Zhu, Fang ;
Gorczynski, Reg ;
Laister, Robert C. ;
Minden, Mark ;
Blechert, Anne-Kareen ;
Genzel, Yvonne ;
Reichl, Udo ;
Spaner, David E. .
BLOOD, 2013, 122 (06) :969-980
[128]   Lymph protects metastasizing melanoma cells from ferroptosis [J].
Ubellacker, Jessalyn M. ;
Tasdogan, Alpaslan ;
Ramesh, Vijayashree ;
Shen, Bo ;
Mitchell, Evann C. ;
Martin-Sandoval, Misty S. ;
Gu, Zhimin ;
McCormick, Michael L. ;
Durham, Alison B. ;
Spitz, Douglas R. ;
Zhao, Zhiyu ;
Mathews, Thomas P. ;
Morrison, Sean J. .
NATURE, 2020, 585 (7823) :113-+
[129]   ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration [J].
Umemoto, Terumasa ;
Johansson, Alban ;
Ahmad, Shah Adil Ishtiyaq ;
Hashimoto, Michihiro ;
Kubota, Sho ;
Kikuchi, Kenta ;
Odaka, Haruki ;
Era, Takumi ;
Kurotaki, Daisuke ;
Sashida, Goro ;
Suda, Toshio .
EMBO JOURNAL, 2022, 41 (08)
[130]   Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+ T Cell Memory Development [J].
van der Windt, Gerritje J. W. ;
Everts, Bart ;
Chang, Chih-Hao ;
Curtis, Jonathan D. ;
Freitas, Tori C. ;
Amiel, Eyal ;
Pearce, Edward J. ;
Pearce, Erika L. .
IMMUNITY, 2012, 36 (01) :68-78