ADFilter-A Web Tool for New Physics Searches with Autoencoder-Based Anomaly Detection Using Deep Unsupervised Neural Networks

被引:0
作者
Chekanov, Sergei V. [1 ]
Islam, Wasikul [2 ]
Zhang, Rui [2 ]
Luongo, Nicholas [1 ]
机构
[1] Argonne Natl Lab, HEP Div, Lemont, IL 60439 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
anomaly detection; neural networks; new physics searches; LHC; FORMAT;
D O I
10.3390/info16040258
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A web-based tool called ADFilter (short for Anomaly Detection Filter) was developed to process collision events using autoencoders based on a deep unsupervised neural network. The autoencoders are trained on a small fraction of either collision data or Standard Model (SM) Monte Carlo simulations. The tool calculates loss distributions for input events, helping to determine the degree to which the events can be considered anomalous with respect to the SM events used for training. Therefore, it can be used for new physics searches in collider experiments. Real-life examples are provided to demonstrate how the tool can be used to reinterpret existing results from the Large Hadron Collider (LHC), with the goal of significantly improving exclusion limits. This tool is expected to mitigate the "reproducibility crisis" associated with various machine learning techniques, as it can incorporate machine learning approaches from third-party publications, making them accessible to the general public.
引用
收藏
页数:13
相关论文
共 26 条
[1]  
Aaboud M, 2020, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2020)151
[2]   Search for New Phenomena in Two-Body Invariant Mass Distributions Using Unsupervised Machine Learning for Anomaly Detection at p s=13 TeV ffi with the ATLAS Detector [J].
Aad, G. ;
Abbott, B. ;
Abeling, K. ;
Abicht, N. J. ;
Abidi, S. H. ;
Aboulhorma, A. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Abusleme Hoffman, A. C. ;
Acharya, B. S. ;
Bourdarios, C. Adam ;
Adamczyk, L. ;
Adamek, L. ;
Addepalli, S. V. ;
Addison, M. J. ;
Adelman, J. ;
Adiguzel, A. ;
Adye, T. ;
Affolder, A. A. ;
Afik, Y. ;
Agaras, M. N. ;
Agarwala, J. ;
Aggarwal, A. ;
Agheorghiesei, C. ;
Ahmad, A. ;
Ahmadov, F. ;
Ahmed, W. S. ;
Ahuja, S. ;
Ai, X. ;
Aielli, G. ;
Aikot, A. ;
Tamlihat, M. Ait ;
Aitbenchikh, B. ;
Aizenberg, I. ;
Akbiyik, M. ;
Akesson, T. P. A. ;
Akimov, A. V. ;
Akiyama, D. ;
Akolkar, N. N. ;
Al Khoury, K. ;
Alberghi, G. L. ;
Albert, J. ;
Albicocco, P. ;
Albouy, G. L. ;
Alderweireldt, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexopoulos, T. .
PHYSICAL REVIEW LETTERS, 2024, 132 (08)
[3]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[4]   A standard format for Les Houches Event Files [J].
Alwall, J. ;
Ballestrero, A. ;
Bartalini, P. ;
Belov, S. ;
Boos, E. ;
Buckley, A. ;
Butterworth, J. M. ;
Dudko, L. ;
Frixione, S. ;
Garren, L. ;
Gieseke, S. ;
Gusev, A. ;
Hinchliffe, I. ;
Huston, J. ;
Kersevan, B. ;
Krauss, F. ;
Lavesson, N. ;
Lonnblad, L. ;
Maina, E. ;
Maltoni, F. ;
Mangano, M. L. ;
Moortgat, F. ;
Mrenna, S. ;
Papadopoulos, C. G. ;
Pittau, R. ;
Richardson, P. ;
Seymour, M. H. ;
Sherstnev, A. ;
Sjostrand, T. ;
Skands, P. ;
Slabospitsky, S. R. ;
Was, Z. ;
Webber, B. R. ;
Worek, M. ;
Zeppenfeld, D. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 176 (04) :300-304
[5]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[6]   MadGraph 5: going beyond [J].
Alwall, Johan ;
Herquet, Michel ;
Maltoni, Fabio ;
Mattelaer, Olivier ;
Stelzer, Tim .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06)
[7]  
anl, ADFilter: Autoencoder Filter for Publications
[8]   Machine learning for anomaly detection in particle physics [J].
Belis V. ;
Odagiu P. ;
Aarrestad T.K. .
Reviews in Physics, 2024, 12
[9]   Java']JavaScript ROOT [J].
Bellenot, Bertrand ;
Linev, Sergey .
21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9, 2015, 664
[10]   The anti-kt jet clustering algorithm [J].
Cacciari, Matteo ;
Salam, Gavin P. ;
Soyez, Gregory .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04)