Quantum Kinetic Theory of the Spin Hall Effect for Disordered Graphene with Rashba Spin-Orbit Coupling

被引:0
作者
Raimondi, Roberto [1 ]
Valet, Thierry [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy
[2] MPhysX OU, Sepapaja Tn 6, EE-15551 Tallinn, Estonia
关键词
spin-orbit coupling; Rashba coupling; electron transport; quantum kinetic theory; spin Hall effect; quantum transport;
D O I
10.3390/condmat10010004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The spin Hall effect for the model Hamiltonian of graphene with Rashba spin-orbit coupling is analyzed by means of a recently derived quantum kinetic theory of the linear response for multi-band electron systems. The latter expresses the interband part of the density matrix in terms of the intraband occupation numbers, which can be obtained as solutions of a Boltzmann transport equation. The analysis, which, in the case of the model here considered, can be carried out in a completely analytical way, thus provides an effective pedagogical illustration of the general theory. While our results agree with those previously obtained with alternative approaches for the same model, our comparatively simpler and more physically transparent derivation illustrates the advantages of our formalism when dealing with non trivial multi-band Hamiltonians.
引用
收藏
页数:16
相关论文
共 47 条
[1]   2D materials for spintronic devices [J].
Ahn, Ethan C. .
NPJ 2D MATERIALS AND APPLICATIONS, 2020, 4 (01)
[2]   Colloquium: Spintronics in graphene and other two-dimensional materials [J].
Avsar, A. ;
Ochoa, H. ;
Guinea, F. ;
Ozyilmaz, B. ;
Van Wees, B. J. ;
Vera-Marun, I. J. .
REVIEWS OF MODERN PHYSICS, 2020, 92 (02)
[3]   Pseudo-Edelstein effect in disordered silicene [J].
Baghran, R. ;
Tehranchi, M. M. ;
Phirouznia, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (17)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Control of Charge-Spin Interconversion in van der Waals Heterostructures with Chiral Charge Density Waves [J].
Chi, Zhendong ;
Lee, Seungjun ;
Yang, Haozhe ;
Dolan, Eoin ;
Safeer, C. K. ;
Ingla-Aynes, Josep ;
Herling, Franz ;
Ontoso, Nerea ;
Martin-Garcia, Beatriz ;
Gobbi, Marco ;
Low, Tony ;
Hueso, Luis E. ;
Casanova, Felix .
ADVANCED MATERIALS, 2024, 36 (18)
[6]   Connecting Higher-Order Topology with the Orbital Hall Effect in Monolayers of Transition Metal Dichalcogenides [J].
Costa, Marcio ;
Focassio, Bruno ;
Canonico, Luis M. ;
Cysne, Tarik P. ;
Schleder, Gabriel R. ;
Muniz, R. B. ;
Fazzio, Adalberto ;
Rappoport, Tatiana G. .
PHYSICAL REVIEW LETTERS, 2023, 130 (11)
[7]   Orbital Hall effect in bilayer transition metal dichalcogenides: From the intra-atomic approximation to the Bloch states orbital magnetic moment approach [J].
Cysne, Tarik P. ;
Bhowal, Sayantika ;
Vignale, Giovanni ;
Rappoport, Tatiana G. .
PHYSICAL REVIEW B, 2022, 105 (19)
[8]   Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides [J].
Cysne, Tarik P. ;
Costa, Marcio ;
Canonico, Luis M. ;
Nardelli, M. Buongiorno ;
Muniz, R. B. ;
Rappoport, Tatiana G. .
PHYSICAL REVIEW LETTERS, 2021, 126 (05)
[9]   Induced spin-orbit coupling in twisted graphene-transition metal dichalcogenide heterobilayers: Twistronics meets spintronics [J].
David, Alessandro ;
Rakyta, Peter ;
Kormanyos, Andor ;
Burkard, Guido .
PHYSICAL REVIEW B, 2019, 100 (08)
[10]   Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin-orbit interaction [J].
Dyrdal, A. ;
Dugaev, V. K. ;
Barnas, J. .
PHYSICAL REVIEW B, 2009, 80 (15)