Fractional Landweber Regularization Method for Identifying the Source Term of the Time Fractional Diffusion-Wave Equation

被引:0
作者
Liang, Zhenyu [1 ]
Jiang, Qin [1 ]
Liu, Qingsong [1 ]
Xu, Luopeng [1 ]
Yang, Fan [2 ]
机构
[1] Civil Aviat Flight Univ China, Sch Sci, Key Lab Photon & Opt Detect Civil Aviat, Guanghan 618307, Peoples R China
[2] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Peoples R China
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 04期
关键词
time fractional diffusion-wave equation; optimal error bound; error estimations; fractional Landweber iterative regularization method; PARAMETER CHOICE RULE; BOUNDARY VALUE METHOD;
D O I
10.3390/sym17040554
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the inverse problem of identifying the source term of the time fractional diffusion-wave equation is studied. This problem is ill-posed, i.e., the solution (if it exists) does not depend on the measurable data. Under the priori bound condition, the condition stable result and the optimal error bound are all obtained. The fractional Landweber iterative regularization method is used to solve this inverse problem. Based on the priori regularization parameter selection rule and the posteriori regularization parameter selection rule, the error estimation between the regularization solution and the exact solution is obtained. Moreover, the error estimations are all order optimal. At the end, three numerical examples are given to prove the effectiveness and stability of this regularization method.
引用
收藏
页数:25
相关论文
共 31 条
[1]   Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain [J].
Brunner, Hermann ;
Han, Houde ;
Yin, Dongsheng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 :541-562
[2]   A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems [J].
Chen, Zhen ;
Chan, Tommy H. T. .
JOURNAL OF SOUND AND VIBRATION, 2017, 401 :297-310
[3]   A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem [J].
Cheng, Wei ;
Fu, Chu-Li ;
Qian, Zhi .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 75 (3-4) :97-112
[4]  
Engl H.W., 1996, MATH ITS APPL
[5]   A reduced basis Landweber method for nonlinear inverse problems [J].
Garmatter, Dominik ;
Haasdonk, Bernard ;
Harrach, Bastian .
INVERSE PROBLEMS, 2016, 32 (03)
[6]   Finite Difference Methods for Caputo-Hadamard Fractional Differential Equations [J].
Gohar, Madiha ;
Li, Changpin ;
Li, Zhiqiang .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
[7]   Mittag-Leffler Functions and Their Applications [J].
Haubold, H. J. ;
Mathai, A. M. ;
Saxena, R. K. .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[8]  
Karimov E., 2016, New Trends Math. Sci, V4, P79
[9]   Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo-Hadamard Fractional Partial Differential Equation [J].
Li, Changpin ;
Li, Zhiqiang ;
Wang, Zhen .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
[10]   Two Regularization Methods for Identifying the Initial Value of Time-Fractional Telegraph Equation [J].
Liang, Ying-Qing ;
Yang, Fan ;
Li, Xiao-Xiao .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025,