Prospective study using artificial neural networks for identification of high-risk COVID-19 patients

被引:0
|
作者
Mateo Frausto-Avila [1 ]
Roberto de J. León-Montiel [2 ]
Mario A. Quiroz-Juárez [1 ]
Alfred B. U’Ren [2 ]
机构
[1] Universidad Nacional Autónoma de México,Centro de Física Aplicada y Tecnología Avanzada
[2] Universidad Nacional Autónoma de México,Instituto de Ciencias Nucleares
关键词
Machine learning; neural networks; COVID-19;
D O I
10.1038/s41598-025-00925-3
中图分类号
学科分类号
摘要
The COVID-19 pandemic caused a major public health crisis, with severe impacts on global health and the economy. Machine learning (ML) has been crucial in developing new technologies to address challenges posed by the pandemic, particularly in identifying high-risk COVID-19 patients. This identification is vital for efficiently allocating hospital resources and controlling the virus’s spread. Comprehensive validation of these intelligent approaches is necessary to confirm their clinical usefulness and help create future strategies for managing viral outbreaks. Here we present a prospective study to evaluate the performance of state-of-the-art ML models designed to identify high-risk COVID-19 patients across four clinical stages. Using artificial neural networks trained with historical patient data from Mexico, we assess the models’ accuracy across six epidemiological waves without retraining them. We then compare their performance against neural networks trained with cumulative historical data up to the end of each wave. The findings reveal that models trained on early data can effectively predict high-risk patients in later waves, despite changes in vaccination rates, viral strains, and treatments. These results suggest that artificial intelligence-based patient classification methods could be robust tools for future pandemics, aiding in predicting clinical outcomes under evolving conditions.
引用
收藏
相关论文
共 50 条
  • [1] Predicting intubation risk among COVID-19 hospitalized patients using artificial neural networks
    Nopour, Raoof
    Shanbezadeh, Mostafa
    Kazemi-Arpanahi, Hadi
    JOURNAL OF EDUCATION AND HEALTH PROMOTION, 2023, 12 (01)
  • [2] Using Artificial Neural Networks to Identify COVID-19 Misinformation
    Alajramy, Loay
    Jarrar, Radi
    DISINFORMATION IN OPEN ONLINE MEDIA, MISDOOM 2022, 2022, 13545 : 16 - 26
  • [3] Ramipril in High-Risk Patients With COVID-19
    Amat-Santos, Ignacio J.
    Santos-Martinez, Sandra
    Lopez-Otero, Diego
    Nombela-Franco, Luis
    Gutierrez-Ibanes, Enrique
    Del Valle, Raquel
    Munoz-Garcia, Erika
    Jimenez-Diaz, Victor A.
    Regueiro, Ander
    Gonzalez-Ferreiro, Rocio
    Benito, Tomas
    Sanmartin-Pena, Xoan Carlos
    Catala, Pablo
    Rodriguez-Gabella, Tania
    Delgado-Arana, Jose Raul
    Carrasco-Moraleja, Manuel
    Ibanez, Borja
    San Roman, J. Alberto
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (03) : 268 - 276
  • [4] Mortality of high-risk orthopaedic oncology patients during the COVID-19 pandemic: A prospective cohort study
    Stevenson, Jonathan D.
    Evans, Scott
    Morris, Guy
    Tillman, Roger
    Abudu, Adesegun
    Jeys, Lee
    Parry, Michael
    JOURNAL OF SURGICAL ONCOLOGY, 2020, 122 (06) : 1027 - 1030
  • [5] Dynamics of Gene Expression Profiling and Identification of High-Risk Patients for Severe COVID-19
    Rombauts, Alexander
    Bodalo Torruella, Marta
    Abelenda-Alonso, Gabriela
    Perera-Bel, Julia
    Ferrer-Salvador, Anna
    Acedo-Terrades, Ariadna
    Gabarros-Subira, Maria
    Oriol, Isabel
    Gudiol, Carlota
    Nonell, Lara
    Carratala, Jordi
    BIOMEDICINES, 2023, 11 (05)
  • [6] Radiomics and artificial neural networks modelling for identification of high-risk carotid plaques
    Gui, Chengzhi
    Cao, Chen
    Zhang, Xin
    Zhang, Jiaxin
    Ni, Guangjian
    Ming, Dong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [7] Artificial neural networks for prediction of COVID-19 in India by using backpropagation
    Manohar, Balakrishnama
    Das, Raja
    EXPERT SYSTEMS, 2023, 40 (05)
  • [8] Predicting high-risk preterm birth using artificial neural networks
    Catley, Christina
    Frize, Monique
    Walker, C. Robin
    Petriu, Dorina C.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (03): : 540 - 549
  • [9] Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
    Asteris, Panagiotis G.
    Gavriilaki, Eleni
    Touloumenidou, Tasoula
    Koravou, Evaggelia-Evdoxia
    Koutra, Maria
    Papayanni, Penelope Georgia
    Pouleres, Alexandros
    Karali, Vassiliki
    Lemonis, Minas E.
    Mamou, Anna
    Skentou, Athanasia D.
    Papalexandri, Apostolia
    Varelas, Christos
    Chatzopoulou, Fani
    Chatzidimitriou, Maria
    Chatzidimitriou, Dimitrios
    Veleni, Anastasia
    Rapti, Evdoxia
    Kioumis, Ioannis
    Kaimakamis, Evaggelos
    Bitzani, Milly
    Boumpas, Dimitrios
    Tsantes, Argyris
    Sotiropoulos, Damianos
    Papadopoulou, Anastasia
    Kalantzis, Ioannis G.
    Vallianatou, Lydia A.
    Armaghani, Danial J.
    Cavaleri, Liborio
    Gandomi, Amir H.
    Hajihassani, Mohsen
    Hasanipanah, Mahdi
    Koopialipoor, Mohammadreza
    Lourenco, Paulo B.
    Samui, Pijush
    Zhou, Jian
    Sakellari, Ioanna
    Valsami, Serena
    Politou, Marianna
    Kokoris, Styliani
    Anagnostopoulos, Achilles
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (05) : 1445 - 1455
  • [10] Artificial Neural Networks for COVID-19 Forecasting in Mexico: An Empirical Study
    Castorena, C. M.
    Alejo, R.
    Rendon, E.
    Granda-Gutierrez, E. E.
    Valdovinos, R. M.
    Miranda-Pina, G.
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 168 - 179