An Efficient Conjugate Gradient Method Based on the Conjugacy Condition with an Application in Motion Control

被引:0
作者
Diphofu, T. [1 ]
Kaelo, P. [1 ]
机构
[1] Univ Botswana, Dept Math, Private Bag UB00704, Gaborone, Botswana
关键词
Conjugate gradient; Global convergence; Nonlinear programming; Motion control; UNCONSTRAINED OPTIMIZATION; CONVERGENCE; ALGORITHMS; MINIMIZATION;
D O I
10.1007/s40995-025-01805-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a new conjugate gradient method where the generated search direction satisfies the sufficient descent condition. Also, the calculation of the new conjugate gradient parameter incorporates the use of the conjugacy condition. Global convergence is established under the strong Wolfe line search and numerical experiments demonstrate the effectiveness and efficiency of the proposed method. Furthermore, the method is used to solve a problem involving motion control of a 2-DOF (degrees of freedom) robotic arm, underscoring its practicality in real-world applications.
引用
收藏
页数:8
相关论文
共 43 条
  • [1] A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration
    Ahmed, Zainab Hassan
    Hbaib, Mohamed
    Abbo, Khalil K.
    Afar, Tall
    [J]. APPLICATIONS OF MATHEMATICS, 2024, 69 (04) : 481 - 499
  • [2] A modified descent Polak-Ribiere-Polyak conjugate gradient method with global convergence property for nonconvex functions
    Aminifard, Zohre
    Babaie-Kafaki, Saman
    [J]. CALCOLO, 2019, 56 (02)
  • [3] Andrei N., 2008, Adv. Model. Optim, V10, P1, DOI DOI 10.1002/ADEM.200890003
  • [4] Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update
    Andrei, Neculai
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 325 : 149 - 164
  • [5] Solving unconstrained optimization problems with some three-term conjugate gradient methods
    Arman, Ladan
    Xu, Yuanming
    Bayat, Mohammad Reza
    Long, Liping
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (02): : 139 - 154
  • [6] A survey on the Dai-Liao family of nonlinear conjugate gradient methods
    Babaie-Kafaki, Saman
    [J]. RAIRO-OPERATIONS RESEARCH, 2023, 57 (01) : 43 - 58
  • [7] An efficient hybrid conjugate gradient method with an adaptive strategy and applications in image restoration problems
    Chen, Zibo
    Shao, Hu
    Liu, Pengjie
    Li, Guoxin
    Rong, Xianglin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 362 - 379
  • [8] Craig J.J., 1989, Int J Electr Eng Edu, V2nd, DOI [DOI 10.7227/IJEEE.41.4.11, 10.7227/IJEEE.41.4.11]
  • [9] New conjugacy conditions and related nonlinear conjugate gradient methods
    Dai, YH
    Liao, LZ
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (01) : 87 - 101
  • [10] A nonlinear conjugate gradient method with a strong global convergence property
    Dai, YH
    Yuan, Y
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) : 177 - 182