A Systematic Review of Machine Learning Algorithms for Soil Pollutant Detection Using Satellite Imagery

被引:0
|
作者
TavallaieNejad, Amir [1 ]
Vila, Maria Cristina [1 ]
Paneiro, Gustavo [2 ]
Baptista, Joao Santos [1 ]
机构
[1] Univ Porto, Fac Engn, CERENA FEUP, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[2] Univ Lisbon, Ctr Nat Resources & Environm CERENA, Dept Mineral & Energy Resources Engn, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
soil pollutant; satellite imagery; artificial intelligence; machine learning; pollution detection; SENTINEL-2; CONTAMINATION; SPECTROSCOPY; MAP; PH;
D O I
10.3390/rs17071207
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil preservation from pollutants is essential for sustaining human and ecological health. This review explores the application of satellite imagery and machine learning (ML) techniques in detecting soil pollution, addressing recent advancements and key challenges in this field. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search across three major databases yielded 47 articles from an initial pool of 1018 publications spanning the last eight years. Among these, 34 studies focused on direct detection of soil pollutants, while 13 examined relationships between vegetation indicators and soil contaminants. This review evaluates various satellite platforms, highlights limitations of existing spaceborne sensors, and compares the effectiveness of ML models for soil pollution detection. Key challenges include the lack of standardization in datasets and methodologies, variations in evaluation metrics, and differences in algorithmic performance across studies. The findings emphasize the need for standardized frameworks and improved sensor capabilities to enhance detection accuracy. This work provides a foundation for future research, encouraging the integration of advanced ML models and multi-sensor satellite data for comprehensive soil pollution monitoring.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review
    Miltiadous, Andreas
    Tzimourta, Katerina D.
    Giannakeas, Nikolaos
    Tsipouras, Markos G.
    Glavas, Euripidis
    Kalafatakis, Konstantinos
    Tzallas, Alexandros T.
    IEEE ACCESS, 2023, 11 : 564 - 594
  • [32] Applications of satellite platforms and machine learning for mapping and monitoring grasslands and pastures: A systematic and comprehensive review
    Pinna, Daniele
    Pezzuolo, Andrea
    Cogato, Alessia
    Pornaro, Cristina
    Macolino, Stefano
    Marinello, Francesco
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [33] Satellite Imagery Super Resolution Using Classical and Deep Learning Algorithms
    Kuchkorov, T. A.
    Djumanov, J. X.
    Ochilov, T. D.
    Sabitova, N. Q.
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT II, 2024, 14532 : 70 - 80
  • [34] Phishing Attacks Detection Using Ensemble Machine Learning Algorithms
    Innab, Nisreen
    Osman, Ahmed Abdelgader Fadol
    Ataelfadiel, Mohammed Awad Mohammed
    Abu-Zanona, Marwan
    Elzaghmouri, Bassam Mohammad
    Zawaideh, Farah H.
    Alawneh, Mouiad Fadeil
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1325 - 1345
  • [35] Credit card fraud detection using machine learning algorithms
    de Souza, Daniel H. M.
    Bordin Jr, Claudio J.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2023, 15 (01): : 1 - 11
  • [36] Acoustic fish species identification using deep learning and machine learning algorithms: A systematic review
    Yassir, Anas
    Andaloussi, Said Jai
    Ouchetto, Ouail
    Mamza, Kamal
    Serghini, Mansour
    FISHERIES RESEARCH, 2023, 266
  • [37] Brain metastasis detection using machine learning: a systematic review and meta-analysis
    Cho, Se Jin
    Sunwoo, Leonard
    Baik, Sung Hyun
    Bae, Yun Jung
    Choi, Byung Se
    Kim, Jae Hyoung
    NEURO-ONCOLOGY, 2021, 23 (02) : 214 - 225
  • [38] A critical systematic review on spectral-based soil nutrient prediction using machine learning
    Jain, Shagun
    Sethia, Divyashikha
    Tiwari, Kailash Chandra
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (08)
  • [39] Machine Learning Applied to the Detection of Mycotoxin in Food: A Systematic Review
    Inglis, Alan
    Parnell, Andrew C.
    Subramani, Natarajan
    Doohan, Fiona M.
    TOXINS, 2024, 16 (06)
  • [40] A Systematic Review on the Effectiveness of Machine Learning in the Detection of Atrial Fibrillation
    Wuraola, Abdulraheem Lubabat
    Al-dwa, Baraah
    Shchekochikhin, Dmitry
    Gognieva, Daria
    Chomakhidze, Petr
    Kuznetsova, Natalia
    Kopylov, Philipp
    Bestavashvilli, Afina A.
    CURRENT CARDIOLOGY REVIEWS, 2025, 21 (01)