A perturbative solution to the linear influence/network autocorrelation model under network dynamics

被引:0
|
作者
Butts, Carter T. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Irvine, Dept Sociol, 3301 Calit2 Bldg, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Stat, 3301 Calit2 Bldg, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Comp Sci, 3301 Calit2 Bldg, Irvine, CA 92697 USA
[4] Univ Calif Irvine, EECS, 3301 Calit2 Bldg, Irvine, CA 92697 USA
关键词
Feedback centrality; linear diffusion model; network autocorrelation model; network dynamics; social influence; SOCIAL-INFLUENCE; COEVOLUTION; INFERENCE; POWER;
D O I
10.1080/0022250X.2025.2496146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Known by many names and arising in many settings, the forced linear diffusion model is central to the modeling of power and influence within social networks (while also serving as the mechanistic justification for the widely used spatial/network autocorrelation models). The standard equilibrium solution to the diffusion model depends on strict timescale separation between network dynamics and attribute dynamics, such that the diffusion network can be considered fixed with respect to the diffusion process. Here, we consider a relaxation of this assumption, in which the network changes only slowly relative to the diffusion dynamics. In this case, we show that one can obtain a perturbative solution to the diffusion model, which depends on knowledge of past states in only a minimal way.
引用
收藏
页数:19
相关论文
共 45 条
  • [1] Bayesian estimation of the network autocorrelation model
    Dittrich, Dino
    Leenders, Roger Th. A. J.
    Mulder, Joris
    SOCIAL NETWORKS, 2017, 48 : 213 - 236
  • [2] Structure and bias in the network autocorrelation model
    Neuman, Eric J.
    Mizruchi, Mark S.
    SOCIAL NETWORKS, 2010, 32 (04) : 290 - 300
  • [3] Vulnerability of nodes under controlled network topology and flow autocorrelation conditions
    Lopez, Fernando A.
    Paez, Antonio
    Carrasco, Juan A.
    Ruminot, Natalia A.
    JOURNAL OF TRANSPORT GEOGRAPHY, 2017, 59 : 77 - 87
  • [4] The network autocorrelation model using two-mode data: Affiliation exposure and potential bias in the autocorrelation parameter
    Fujimoto, Kayo
    Chou, Chih-Ping
    Valente, Thomas W.
    SOCIAL NETWORKS, 2011, 33 (03) : 231 - 243
  • [5] Modeling social influence through network autocorrelation: constructing the weight matrix
    Leenders, RTAJ
    SOCIAL NETWORKS, 2002, 24 (01) : 21 - 47
  • [6] Statistical power of the social network autocorrelation model
    Wang, Wei
    Neuman, Eric J.
    Newman, Daniel A.
    SOCIAL NETWORKS, 2014, 38 : 88 - 99
  • [7] Examining the effect of social influence on student performance through network autocorrelation models
    Vitale, Maria Prosperina
    Porzio, Giovanni C.
    Doreian, Patrick
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (01) : 115 - 127
  • [8] A comparison of estimators for the network autocorrelation model based on observed social networks
    Li, Haomin
    Sewell, Daniel K.
    SOCIAL NETWORKS, 2021, 66 : 202 - 210
  • [9] The effect of density on the level of bias in the network autocorrelation model
    Mizruchi, Mark S.
    Neuman, Eric J.
    SOCIAL NETWORKS, 2008, 30 (03) : 190 - 200
  • [10] An influence network model to study discrepancies in expressed and private opinions
    Ye, Mengbin
    Qin, Yuzhen
    Govaert, Alain
    Anderson, Brian D. O.
    Cao, Ming
    AUTOMATICA, 2019, 107 : 371 - 381