Hydrostatic equilibrium configurations of neutron stars in the f (R, L, T) gravity theory

被引:0
作者
Fortunato, J. A. S. [1 ]
Moraes, P. H. R. S. [2 ]
Brito, E. [3 ]
de Lima Junior, J. G. [4 ]
Guerini, T. S. [5 ]
机构
[1] Univ Fed Espirito Santo UFES, PPGCosmo, CCE, Av Fernando Ferrari 540, Vitoria BR-29075910, ES, Brazil
[2] Univ Cidade Sao Paulo UNICID, Lab Fis Teor & Computac LFTC, Rua Galvao Bueno 868, Sao Paulo, SP, Brazil
[3] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, Rua Bertioga 892, BR-47810059 Barreiras, BA, Brazil
[4] Univ Fed Alagoas UFAL, Inst Fis, Ave Lourival Melo Mota, BR-57072970 Maceio, AL, Brazil
[5] Univ Estado Rio de Janeiro UERJ, Inst Fis, Rua Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil
来源
PHYSICS OF THE DARK UNIVERSE | 2025年 / 48卷
关键词
Modified gravity; Neutron stars; TOV equation; Equations of state; F(R) THEORIES; EQUATIONS; MASS;
D O I
10.1016/j.dark.2025.101893
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the present work, we obtain the hydrostatic equilibrium configurations of neutron stars in the recently proposed f(R,L,T) theory of gravity, for which R is the Ricci scalar, L is the matter lagrangian density, T is the trace of the energy-momentum tensor and f is a function of the argument. This theory emerges in the present literature as a generalized geometry-matter coupling theory of gravity. We derive the Tolman-Oppenheimer-Volkoff-like equation for a particular functional form of the f(R,L,T) function. Our solutions are obtained from realistic equations of state describing matter inside neutron stars. We obtain stable solutions for neutron stars and we show that for some values of the free parameter of the theory it is possible to be in agreement with both NICER and LIGO/Virgo observational data. We also calculate the surface gravitational redshift for the f (R, L, T) gravity neutron stars.
引用
收藏
页数:7
相关论文
共 71 条
  • [31] SOME REMARKS ON f(R) THEORIES OF GRAVITY
    Joras, Sergio E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (22): : 3730 - 3741
  • [32] Dark Energy Versus Modified Gravity
    Joyce, Austin
    Lombriser, Lucas
    Schmidt, Fabian
    [J]. ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 66, 2016, 66 : 95 - 122
  • [33] Dark matter in modified gravity?
    Katsuragawa, Taishi
    Matsuzaki, Shinya
    [J]. PHYSICAL REVIEW D, 2017, 95 (04)
  • [34] MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP?
    Kreidberg, Laura
    Bailyn, Charles D.
    Farr, Will M.
    Kalogera, Vicky
    [J]. ASTROPHYSICAL JOURNAL, 2012, 757 (01)
  • [35] Neutron star equation of state
    Lattimer, James M.
    [J]. NEW ASTRONOMY REVIEWS, 2010, 54 (3-6) : 101 - 109
  • [36] Neutron star equation of state: Quark mean-field (QMF) modeling and applications
    Li, A.
    Zhu, Z. -Y.
    Zhou, E. -P.
    Dong, J. -M.
    Hu, J. -N.
    Xia, C. -J.
    [J]. JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2020, 28 : 19 - 46
  • [37] Testing dark matter and modifications to gravity using local Milky Way observables
    Lisanti, Mariangela
    Moschella, Matthew
    Outmezguine, Nadav Joseph
    Slone, Oren
    [J]. PHYSICAL REVIEW D, 2019, 100 (08)
  • [38] Merging matter and geometry in the same Lagrangian
    Ludwig, Hendrik
    Minazzoli, Olivier
    Capozziello, Salvatore
    [J]. PHYSICS LETTERS B, 2015, 751 : 576 - 578
  • [39] H0 tension in torsion-based modified gravity
    Mandal, Sanjay
    Sokoliuk, Oleksii
    Mishra, Sai Swagat
    Sahoo, P. K.
    [J]. NUCLEAR PHYSICS B, 2023, 993
  • [40] Black holes and their horizons in semiclassical and modified theories of gravity
    Mann, Robert B.
    Murk, Sebastian
    Terno, Daniel R.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (09):