Legal Judgment Prediction using Natural Language Processing and Machine Learning Methods: A Systematic Literature Review

被引:0
|
作者
Dina, Nasa Zata [1 ]
Ravana, Sri Devi [1 ]
Idris, Norisma [1 ]
机构
[1] Univ Malaya, Kuala Lumpur, Malaysia
来源
SAGE OPEN | 2025年 / 15卷 / 02期
关键词
legal judgment prediction; legal judgment document; machine learning; natural language processing; NETWORKS; SMOTE;
D O I
10.1177/21582440251329663
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
Legal Judgment Prediction (LJP) study is experiencing a growing need for automating legal judgment process to predict court decisions. In this context, the present paper provides a systematic literature review of previous LJP study, implementing machine learning (ML) as decision-making and natural language processing (NLP) to extract information from legal judgment documents. Relevant articles were found in reputable indexing databases through the search strategy, with the outcomes filtered by applying inclusion and exclusion criteria. Furthermore, six research questions were constructed to observe the datasets, topics/trends, NLP and ML methods, evaluation methods, and challenges. The LJP topic included three topics which were charge, law article, and term-of-penalty prediction. There were 21 NLP methods applied, emphasizing the highest implementation of Term Frequency-Inverse Document Frequency (TF-IDF) while the most implemented ML method was Support Vector Machine (SVM). Accuracy was the most used metric as an evaluation method. Additionally, this work emphasizes the importance of LJP and the potential use of NLP and ML. This study urges further investigation into NLP and ML, as well as practical uses of LJP. Low classification performance, low quantity of data, imbalanced dataset, data accessibility, data labeling, extraction of semantic information from natural language, expert involvement, generalizability issue, and multilingual datasets represent a few of the major problems that LJP faces, and the study is significant because it clarifies some of the major issues that LJP faces. Among those problems, low amounts of dataset and low classification performance were regarded as the most challenging tasks to deal with.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Crop yield prediction using machine learning: An extensive and systematic literature review
    Shawon, Sarowar Morshed
    Ema, Falguny Barua
    Mahi, Asura Khanom
    Niha, Fahima Lokman
    Zubair, H. T.
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10
  • [32] A Systematic Literature Review of Student' Performance Prediction Using Machine Learning Techniques
    Albreiki, Balqis
    Zaki, Nazar
    Alashwal, Hany
    EDUCATION SCIENCES, 2021, 11 (09):
  • [33] Analysis of Breakdown Reports Using Natural Language Processing and Machine Learning
    Ahmed, Mobyen Uddin
    Bengtsson, Marcus
    Salonen, Antti
    Funk, Peter
    INTERNATIONAL CONGRESS AND WORKSHOP ON INDUSTRIAL AI 2021, 2022, : 40 - 52
  • [34] Machine Learning and Natural Language Processing for Prediction of Human Factors in Aviation Incident Reports
    Madeira, Tomas
    Melicio, Rui
    Valerio, Duarte
    Santos, Luis
    AEROSPACE, 2021, 8 (02) : 1 - 18
  • [35] Deep Learning for Natural Language Processing in Radiology-Fundamentals and a Systematic Review
    Sorin, Vera
    Barash, Yiftach
    Konen, Eli
    Klang, Eyal
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2020, 17 (05) : 639 - 648
  • [36] Artificial learning companionusing machine learning and natural language processing
    R. Pugalenthi
    A Prabhu Chakkaravarthy
    J Ramya
    Samyuktha Babu
    R. Rasika Krishnan
    International Journal of Speech Technology, 2021, 24 : 553 - 560
  • [37] Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review
    Sim, Jin-ah
    Huang, Xiaolei
    Horan, Madeline R.
    Stewart, Christopher M.
    Robison, Leslie L.
    Hudson, Melissa M.
    Baker, Justin N.
    Huang, I-Chan
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 146
  • [38] Artificial learning companionusing machine learning and natural language processing
    Pugalenthi, R.
    Prabhu Chakkaravarthy, A.
    Ramya, J.
    Babu, Samyuktha
    Rasika Krishnan, R.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2021, 24 (03) : 553 - 560
  • [39] Synergizing machine learning & symbolic methods: A survey on hybrid approaches to natural language processing
    Panchendrarajan, Rrubaa
    Zubiaga, Arkaitz
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [40] Machine learning for electric power prediction: a systematic literature review
    Yandar, Kandel L.
    Revelo-Sanchez, Oscar
    Bolanos-Gonzalez, Manuel E.
    INGENIERIA Y COMPETITIVIDAD, 2024, 26 (02):