Using neural networks for imputing missing values in insurance data

被引:0
作者
Gan, Guojun [1 ]
Yan, Yueming [2 ]
机构
[1] Univ Connecticut, Dept Math, 314 Mansfield Rd, Storrs, CT 06269 USA
[2] Shihezi Univ, Sch Econ & Management, Beisi Rd, Shihezi 832003, Xinjiang, Peoples R China
关键词
Missing values; Imputation; Neural network; Generative adversarial network; Gumbel-softmax; MULTIPLE IMPUTATION; PACKAGES;
D O I
10.1007/s42081-025-00304-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Real data often contains missing values which poses a major challenge in predictive modeling. Imputation techniques are proposed to impute missing values. In this paper, we explore the use of neural networks to impute missing values. In particular, we extend and explore an imputation method based on generative adversarial networks (GANs) to impute missing values in insurance data. The imputation method can handle missing values in datasets that contain both categorical and continuous variables. We conduct experiments on large insurance datasets from different areas such as life insurance and property and casualty insurance. Our numerical results show that using the GAN-based imputation method to impute missing values is efficient and helps to improve the prediction accuracy.
引用
收藏
页数:39
相关论文
共 43 条
  • [1] Missing data imputation using fuzzy-rough methods
    Amiri, Mehran
    Jensen, Richard
    [J]. NEUROCOMPUTING, 2016, 205 : 152 - 164
  • [2] Camino R.D., 2018, ICML 2018 WORKSH THE
  • [3] Dai Zongyu., 2023, Asian Conference on Machine Learning, P265
  • [4] An efficient realization of deep learning for traffic data imputation
    Duan, Yanjie
    Lv, Yisheng
    Liu, Yu-Liang
    Wang, Fei-Yue
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2016, 72 : 168 - 181
  • [5] Multiple imputation as a flexible tool for missing data handling in clinical research
    Enders, Craig K.
    [J]. BEHAVIOUR RESEARCH AND THERAPY, 2017, 98 : 4 - 18
  • [6] Francis L., 2005, Casualty Actuarial Society Forum Casualty Actuarial Society, P198
  • [7] Hierarchical Insurance Claims Modeling
    Frees, Edward W.
    Valdez, Emiliano A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) : 1457 - 1469
  • [8] Gan G., 2018, Actuarial Statistics with R: Theory and Case Studies, P363
  • [9] Gan GJ, 2017, DEPEND MODEL, V5, P354, DOI 10.1515/demo-2017-0021
  • [10] Pattern classification with missing data: a review
    Garcia-Laencina, Pedro J.
    Sancho-Gomez, Jose-Luis
    Figueiras-Vidal, Anibal R.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2010, 19 (02) : 263 - 282