Higher order multipoint flux mixed finite element methods for parabolic equation

被引:0
作者
Liu, Guoliang [1 ]
Xu, Wenwen [1 ]
Li, Xindong [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed finite element methods; Higher order multipoint flux methods; Parabolic equation; Optimal convergence; FLOW;
D O I
10.1016/j.camwa.2025.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider higher order multipoint flux mixed finite element methods for parabolic problems. The methods are based on enhanced Raviart-Thomas spaces with bubbles. The tensor-product Gauss-Lobatto quadrature rule is employed, which enables local velocity elimination and results in a symmetric, positive definite cell-based system for pressures. We construct two fully discrete schemes for the problems, including the backward Euler scheme and Crank-Nicolson scheme. Theoretical analysis shows optimal order convergence for pressure and velocity on h2-perturbed meshes. Numerical experiments are presented to verify the theoretical results and demonstrate the superiority of the proposed method compared to classical mixed finite element methods.
引用
收藏
页码:144 / 160
页数:17
相关论文
共 50 条
  • [1] Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Lee, Jeonghun J.
    Yotov, Ivan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (06) : 1037 - 1077
  • [2] Flux-mortar mixed finite element methods with multipoint flux approximation
    Boon, Wietse M.
    Glaeser, Dennis
    Helmig, Rainer
    Yotov, Ivan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [3] Multipoint flux mixed finite element method for parabolic optimal control problems
    Zhang, Tiantian
    Xu, Wenwen
    Li, Xindong
    Wang, Yan
    AIMS MATHEMATICS, 2022, 7 (09): : 17461 - 17474
  • [4] A TWO-GRID MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC PROBLEMS
    Xu, Wenwen
    Li, Xindong
    Song, Nana
    Yang, Lu
    Yuan, Xiqian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03): : 1310 - 1329
  • [5] Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity
    Wheeler, Mary
    Xue, Guangri
    Yotov, Ivan
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (01) : 57 - 75
  • [6] Multipoint flux mixed finite element methods for slightly compressible flow in porous media
    Arraras, A.
    Portero, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (06) : 1437 - 1452
  • [7] A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
    Wheeler, Mary F.
    Xue, Guangri
    Yotov, Ivan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 918 - 927
  • [8] Mixed finite element methods for the Rosenau equation
    Noureddine Atouani
    Yousra Ouali
    Khaled Omrani
    Journal of Applied Mathematics and Computing, 2018, 57 : 393 - 420
  • [9] An online generalized multiscale approximation of the multipoint flux mixed finite element method
    He, Zhengkang
    Chen, Jie
    Chen, Zhangxin
    Zhang, Tong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [10] Mixed finite element methods for the Rosenau equation
    Atouani, Noureddine
    Ouali, Yousra
    Omrani, Khaled
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 393 - 420