Android Malware Detection: Leveraging Deep Learning with Process Control Block Information

被引:0
|
作者
Alawneh, Heba [1 ]
Alkofahi, Hamza [1 ]
Umphress, David [2 ]
机构
[1] Jordan Univ Sci & Technol, Irbid, Jordan
[2] Auburn Univ, Auburn, AL 36849 USA
来源
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 21ST INTERNATIONAL CONFERENCE | 2025年 / 1259卷
关键词
Dynamic Malware Detection; Deep Learning; Process Control Block mining; kernel-level monitoring;
D O I
10.1007/978-3-031-82073-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The security and privacy of Android device users are seriously threatened by the sophistication and endurance of malware. The risks associated with malware assaults on Android are larger than ever since mobile devices are being utilized for sensitive transactions and data storage more and more. This paper proposes a dynamic malware detection system that mines data from Process Control Blocks (PCBs) during process execution to identify malicious activity using deep learning techniques. Our method provides robust detection of various threats by examining processes at this fundamental level. It precisely monitors changes in PCB parameters for all application threads functioning at the kernel level, in contrast to user-level malware detection. Our PCB mining approach outperforms existing methods in accuracy and scalability of captured PCB records. Our testing findings revealed a high success rate, capturing over 99 percent of context transitions. Utilizing a manageable sequence size of 12 PCBs, our deep learning detection model successfully identified malicious activity at various points in the process execution, achieving an accuracy of 95.6%.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 50 条
  • [11] A brief survey of deep learning methods for android Malware detection
    Joomye, Abdurraheem
    Ling, Mee Hong
    Yau, Kok-Lim Alvin
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2025, 16 (02) : 711 - 733
  • [12] Static Analysis of Android Malware Detection using Deep Learning
    Sandeep, H. R.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 841 - 845
  • [13] Android Malware Detection Based on Deep Learning: Achievements and Challenges
    Chen Yi
    Tang Di
    Zou Wei
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (09) : 2082 - 2094
  • [14] A Robust Approach for Android Malware Detection Based on Deep Learning
    Li P.-W.
    Jiang Y.-Q.
    Xue F.-Y.
    Huang J.-J.
    Xu C.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (08): : 1502 - 1508
  • [15] Malware Detection in Android IoT Systems Using Deep Learning
    Waqar, Muhammad
    Fareed, Sabeeh
    Kim, Ajung
    Malik, Saif Ur Rehman
    Imran, Muhammad
    Yaseen, Muhammad Usman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 4399 - 4415
  • [16] Droid-Sec: Deep Learning in Android Malware Detection
    Yuan, Zhenlong
    Lu, Yongqiang
    Wang, Zhaoguo
    Xue, Yibo
    SIGCOMM'14: PROCEEDINGS OF THE 2014 ACM CONFERENCE ON SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2014, : 371 - 372
  • [17] Droid-Sec: Deep Learning in Android Malware Detection
    Yuan, Zhenlong
    Lu, Yongqiang
    Wang, Zhaoguo
    Xue, Yibo
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2014, 44 (04) : 371 - 372
  • [18] DroidDetector: Android Malware Characterization and Detection Using Deep Learning
    Yuan, Zhenlong
    Lu, Yongqiang
    Xue, Yibo
    TSINGHUA SCIENCE AND TECHNOLOGY, 2016, 21 (01) : 114 - 123
  • [19] Deep Android Malware Detection and Classification
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1677 - 1683
  • [20] Deep Learning based Malware Detection for Android Systems: A Comparative Analysis
    Bayazit, Esra Calik
    Sahingoz, Ozgur Koray
    Dogan, Buket
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2023, 30 (03): : 787 - 796