The role of the multiplicity of circadian clocks in mammalian systems

被引:0
|
作者
Myung, Jihwan [1 ,2 ]
Vitet, Helene [1 ]
Truong, Vuong Hung [1 ]
Ananthasubramaniam, Bharath [3 ]
机构
[1] Taipei Med Univ, Grad Inst Mind Brain & Consciousness GIMBC, New Taipei City 235, Taiwan
[2] Taipei Med Univ, Grad Inst Med Sci, Coll Med, Taipei 110, Taiwan
[3] Humboldt Univ, Inst Theoret Biol, D-10115 Berlin, Germany
关键词
Circadian rhythms; Suprachiasmatic nucleus; Central clock; Local clocks; Synchronization; Internal temporal order; REV-ERB-ALPHA; E-BOX; GENE-EXPRESSION; PHASE-SHIFTS; RHYTHM; TRANSCRIPTION; MECHANISM; DOPAMINE; BINDING; ENTRAINMENT;
D O I
10.1016/j.sleep.2025.106518
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Circadian clocks regulate rhythmic biological processes in nearly every tissue, aligning physiology and behavior with the 24-h light-dark cycle. While the central circadian clock in the suprachiasmatic nucleus (SCN) has been extensively studied, emerging evidence indicates that virtually every cell in the body possesses its own locally autonomous circadian clock. This raises a fundamental question: why do multicellular organisms utilize multiple circadian clocks instead of a single master clock broadcasting time cues? Here, we examine how distributed local clocks differ from phase-resettable cycles and ensure robust temporal scheduling of physiological processes. We discuss how internal entrainment among local clocks governs self-sustained, yet flexible, circadian organization of tissue-specific responses to environmental changes. We also examine how the organization of clocks contributes to seasonal homeostasis, and the implications for disease when coordination among these clocks is disrupted.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Peripheral circadian clocks are diversely affected by adrenalectomy
    Sotak, M.
    Bryndova, J.
    Ergang, P.
    Vagnerova, K.
    Kvapilova, P.
    Vodicka, M.
    Pacha, J.
    Sumova, A.
    CHRONOBIOLOGY INTERNATIONAL, 2016, 33 (05) : 520 - 529
  • [32] Clocks not winding down: unravelling circadian networks
    Zhang, Eric E.
    Kay, Steve A.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2010, 11 (11) : 764 - 776
  • [33] Sleep, Immunity, and Circadian Clocks: A Mechanistic Model
    Bollinger, Thomas
    Bollinger, Annalena
    Oster, Henrik
    Solbach, Werner
    GERONTOLOGY, 2010, 56 (06) : 574 - 580
  • [34] Interconnection between circadian clocks and thyroid function
    Ikegami, Keisuke
    Refetoff, Samuel
    Van Cauter, Eve
    Yoshimura, Takashi
    NATURE REVIEWS ENDOCRINOLOGY, 2019, 15 (10) : 590 - 600
  • [35] COCAINE MODULATES MAMMALIAN CIRCADIAN CLOCK TIMING BY DECREASING SEROTONIN TRANSPORT IN THE SCN
    Prosser, R. A.
    Stowie, A.
    Amicarelli, M.
    Nackenoff, A. G.
    Blakely, R. D.
    Glass, J. D.
    NEUROSCIENCE, 2014, 275 : 184 - 193
  • [36] A Mathematical Model to Characterize the Role of Light Adaptation in Mammalian Circadian Clock
    Shi, Yuzeng
    Liu, Yu
    Yang, Ling
    Yan, Jie
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [37] Genomics and systems approaches in the mammalian circadian clock
    Baggs, Julie E.
    Hogenesch, John B.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2010, 20 (06) : 581 - 587
  • [38] Mathematical modeling of mammalian circadian clocks affecting drug and disease responses
    Panteleimon D. Mavroudis
    William J. Jusko
    Journal of Pharmacokinetics and Pharmacodynamics, 2021, 48 : 375 - 386
  • [39] Cells have sex chromosomes and circadian clocks: Implications for organismal level functions
    Silver, Rae
    PHYSIOLOGY & BEHAVIOR, 2018, 187 : 6 - 12
  • [40] The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology
    Schroder, Elizabeth A.
    Ono, Makoto
    Johnson, Sidney R.
    Rozmus, Ezekiel R.
    Burgess, Don E.
    Esser, Karyn A.
    Delisle, Brian P.
    JOURNAL OF PHYSIOLOGY-LONDON, 2022, 600 (09): : 2037 - 2048