Dual role of hydrogen in fatigue life of 316L austenitic stainless steel

被引:0
|
作者
Zhao, Chenyu [1 ,2 ]
Deng, Lisheng [1 ,2 ]
Wu, Shuang [1 ,2 ]
Wu, Weijie [1 ,2 ]
Peng, Yawei [1 ,2 ]
Wang, Xiaowei [1 ,2 ]
Jiang, Yong [1 ,2 ]
Gong, Jianming [1 ,2 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Inst Reliabil Ctr Mfg IRcM, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen induced fatigue; Dislocation motion mode; Stacking fault energy; Fracture mechanism; STACKING-FAULT ENERGY; CRACK GROWTH; ENVIRONMENT EMBRITTLEMENT; AISI; 316L; BEHAVIOR; EXTRUSIONS; INTRUSIONS; MECHANISMS; STAGE;
D O I
10.1016/j.ijfatigue.2025.108975
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The presence of hydrogen can significantly alter the fatigue behavior of materials, posing a serious threat to the safe and reliable operation of components. In this study, an electrochemical in-situ hydrogen charging fatigue testing method was used to examine the effect of hydrogen on the fatigue strength and lifetime of 316L austenitic stainless steel. The impact of hydrogen on fatigue fracture behavior was analyzed using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The results indicated that, compared to specimens tested in air, in-situ charging increases the fatigue lifetime at higher stress amplitudes but significantly reduces it at lower stress amplitudes. Regardless of the testing environment, the crack initiation lifetime constitutes the majority of the total fatigue lifetime. Notably, at higher stress amplitudes, hydrogen greatly extends the fatigue crack initiation lifetime, whereas, at lower stress amplitudes, it has the opposite effect. This is attributed to the influence of hydrogen on dislocation motion patterns, which lowers the critical stress for dislocation plane slip. Hydrogen plays a dual role in the fatigue behavior of 316L steel.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] DUCTILITY AND FATIGUE STRENGTH LOSS OF A HYDROGEN -CHARGED 316L AUSTENITIC STAINLESS STEEL
    Baek, Un Bong
    Thanh Tuan Nguyen
    Nahm, Seung Hoon
    Ryu, Kwon Sang
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 6B, 2019,
  • [2] Fatigue strength of additively manufactured 316L austenitic stainless steel
    Kumar, Punit
    Jayaraj, R.
    Suryawanshi, J.
    Satwik, U. R.
    McKinnell, J.
    Ramamurty, U.
    ACTA MATERIALIA, 2020, 199 (199) : 225 - 239
  • [3] The influence of hydrogen on the low cycle fatigue behavior of strain-hardened 316L stainless steel
    Oliveira, Dayane M.
    San Marchi, Christopher W.
    Medlin, Douglas L.
    Gibeling, Jeffery C.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 849
  • [4] Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel
    Ueno, H.
    Kakihata, K.
    Kaneko, Y.
    Hashimoto, S.
    Vinogradov, A.
    ACTA MATERIALIA, 2011, 59 (18) : 7060 - 7069
  • [5] Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution
    Stinville, J. C.
    Villechaise, P.
    Templier, C.
    Riviere, J. P.
    Drouet, M.
    SURFACE & COATINGS TECHNOLOGY, 2010, 204 (12-13) : 1947 - 1951
  • [6] Effect of contact pressure on torsional fretting fatigue damage of 316L austenitic stainless steel
    Xu, Z. B.
    Peng, J. F.
    Liu, J. H.
    Cai, Z. B.
    Zhu, M. H.
    WEAR, 2017, 376 : 680 - 689
  • [7] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [8] Fatigue Properties of 316L Stainless Steel
    Zhao, Xiao
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 3786 - 3789
  • [9] Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel
    Nygren, K. E.
    Nagao, A.
    Wang, S.
    Sofronis, P.
    Robertson, I. M.
    ACTA MATERIALIA, 2021, 213
  • [10] Characteristics of Mechanical Properties and Microstructure for 316L Austenitic Stainless Steel
    Song Ren-bo
    Xiang Jian-ying
    Hou Dong-po
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2011, 18 (11) : 53 - 59