Background and Objective: Single-cell imaging plays a key role in various fields, including drug development, disease diagnosis, and personalized medicine. To obtain multi-modal information from a single-cell image, especially for label-free cells, this study develops modal expansion cytometry for label-free single-cell analysis. Methods: The study utilizes a deep learning-based architecture to expand single-mode light scattering images into multi-modality images, including bright-field (non-fluorescent) and fluorescence images, for label-free single-cell analysis. By combining adversarial loss, L1 distance loss, and VGG perceptual loss, a new network optimization method is proposed. The effectiveness of this method is verified by experiments on simulated images, standard spheres of different sizes, and multiple cell types (such as cervical cancer and leukemia cells). Additionally, the capability of this method in single-cell analysis is assessed through multi-modal cell classification experiments, such as cervical cancer subtypes. Results: This is demonstrated by using both cervical cancer cells and leukemia cells. The expanded bright-field and fluorescence images derived from the light scattering images align closely with those obtained through conventional microscopy, showing a contour ratio near 1 for both the whole cell and its nucleus. Using machine learning, the subtyping of cervical cancer cells achieved 92.85 % accuracy with the modal expansion images, which represents an improvement of nearly 20 % over single-mode light scattering images. Conclusions: This study demonstrates the light scattering imaging modal expansion cytometry with deep learning has the capability to expand the single-mode light scattering image into the artificial multimodal images of labelfree single cells, which not only provides the visualization of cells but also helps for the cell classification, showing great potential in the field of single-cell analysis such as cancer cell diagnosis.