Explainable machine learning models for mortality prediction in patients with sepsis in tertiary care hospital ICU in low- to middle-income countries

被引:0
作者
Saumya Diwan [1 ]
Vinay Gandhi [2 ]
Esha Baidya Kayal [3 ]
Puneet Khanna [1 ]
Amit Mehndiratta [3 ]
机构
[1] Indian Institute of Technology Delhi,Centre for Biomedical Engineering
[2] Emory University,School of Medicine
[3] All India Institute of Medical Sciences New Delhi,Department of Anaesthesiology, Pain Medicine and Critical Care
[4] All India Institute of Medical Sciences New Delhi,Department of Biomedical Engineering
关键词
Critical care; Explainable artificial intelligence; Machine learning; Mortality prediction; Sepsis; ICU;
D O I
10.1186/s40635-025-00765-5
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Deploying machine learning with messy, real world data in low- and middle-income countries: Developing a global health use case
    Finnegan, Amy
    Potenziani, David D.
    Karutu, Caroline
    Wanyana, Irene
    Matsiko, Nicholas
    Elahi, Cyrus
    Mijumbi, Nobert
    Stanley, Richard
    Vota, Wayan
    FRONTIERS IN BIG DATA, 2022, 5
  • [42] Early Prediction of Mortality, Severity, and Length of Stay in the Intensive Care Unit of Sepsis Patients Based on Sepsis 3.0 by Machine Learning Models
    Su, Longxiang
    Xu, Zheng
    Chang, Fengxiang
    Ma, Yingying
    Liu, Shengjun
    Jiang, Huizhen
    Wang, Hao
    Li, Dongkai
    Chen, Huan
    Zhou, Xiang
    Hong, Na
    Zhu, Weiguo
    Long, Yun
    FRONTIERS IN MEDICINE, 2021, 8
  • [43] Toward Model-Generated Household Listing in Low- and Middle-Income Countries Using Deep Learning
    Chew, Robert
    Jones, Kasey
    Unangst, Jennifer
    Cajka, James
    Allpress, Justine
    Amer, Safaa
    Krotki, Karol
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (11)
  • [44] The prediction of in-hospital mortality in elderly patients with sepsis-associated acute kidney injury utilizing machine learning models
    Tang, Jie
    Huang, Jian
    He, Xin
    Zou, Sijue
    Gong, Li
    Yuan, Qiongjing
    Peng, Zhangzhe
    HELIYON, 2024, 10 (04)
  • [45] Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm
    Ren, Wensen
    Zou, Kang
    Huang, Shu
    Xu, Huan
    Zhang, Wei
    Shi, Xiaomin
    Shi, Lei
    Zhong, Xiaolin
    Peng, Yan
    Tang, Xiaowei
    Lu, Muhan
    JOURNAL OF CLINICAL GASTROENTEROLOGY, 2024, 58 (06) : 619 - 626
  • [46] Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Kaewput, Wisit
    Qureshi, Fawad
    Qureshi, Fahad
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    O'Corragain, Oisin A.
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    Guru, Pramod K.
    Mao, Michael A.
    Garovic, Vesna D.
    Dillon, John J.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)
  • [47] Efficacy of deep learning methods for predicting under-five mortality in 34 low-income and middle-income countries
    Adegbosin, Adeyinka Emmanuel
    Stantic, Bela
    Sun, Jing
    BMJ OPEN, 2020, 10 (08):
  • [48] Modest Clostridiodes difficile infection prediction using machine learning models in a tertiary care hospital
    Marra, Alexandre R.
    Alzunitan, Mohammed
    Abosi, Oluchi
    Edmond, Michael B.
    Street, W. Nick
    Cromwell, John W.
    Salinas, Jorge L.
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2020, 98 (02)
  • [49] Evaluating the effectiveness of a sliding window technique in machine learning models for mortality prediction in ICU cardiac arrest patients
    Danay, Lihi
    Ramon-Gonen, Roni
    Gorodetski, Maria
    Schwartz, David G.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 191
  • [50] Pragmatic Recommendations for the Prevention and Treatment of Acute Kidney Injury in Patients with COVID-19 in Low- and Middle-Income Countries
    Rudd, Kristina E.
    Cizmeci, Elif A.
    Galli, Gabriela M.
    Lundeg, Ganbold
    Schultz, Marcus J.
    Papali, Alfred
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2021, 104 (03) : 87 - 98