Markoff m-Triples with k-Fibonacci Components

被引:0
作者
Alfaya, D. [1 ,2 ]
Calvo, L. A. [3 ]
de Guinea, A. Martinez [2 ]
Rodrigo, J. [1 ]
Srinivasan, A. [3 ]
机构
[1] Comillas Pontifical Univ, ICAI Sch Engn, Dept Appl Math, C-Alberto Aguilera 25, Madrid 28015, Spain
[2] Comillas Pontif Univ, Inst Res Technol, ICAI Sch Engn, C-Santa Cruz de Marcenado 26, Madrid 28015, Spain
[3] Comillas Pontifical Univ, Dept Quantitat Methods, ICADE, C-Alberto Aguilera 23, Madrid 28015, Spain
关键词
Markoff triples; generalized Markoff equation; k-Fibonacci numbers; Markoff tree; EQUATION;
D O I
10.1007/s00009-025-02845-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify all solution triples with k-Fibonacci components to the equation x2+y2+z2=3xyz+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<^>2+y<^>2+z<^>2=3xyz+m$$\end{document}, where m is a positive integer and k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}. As a result, for m=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=8$$\end{document}, we have the Markoff triples with Pell components (F2(2),F2(2n),F2(2n+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_2(2), F_2(2n), F_2(2n+2))$$\end{document}, for n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}. For all other m there exists at most one such ordered triple, except when k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, a is odd, b is even and b >= a+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge a+3$$\end{document}, where (F3(a),F3(b),F3(a+b))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_3(a),F_3(b),F_3(a+b))$$\end{document} and (F3(a+1),F3(b-1),F3(a+b))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_3(a+1),F_3(b-1),F_3(a+b))$$\end{document} share the same m.
引用
收藏
页数:19
相关论文
共 15 条
[1]  
Alfaya D, 2025, Arxiv, DOI arXiv:2405.08509
[2]   Markov Type Equations with Solutions in Lucas Sequences [J].
Altassan, Alaa ;
Luca, Florian .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
[3]  
Falcon S., 2011, Int. J. Contemp. Math. Sci., V6, P1039
[4]   Integral points on Markoff type cubic surfaces [J].
Ghosh, Amit ;
Sarnak, Peter .
INVENTIONES MATHEMATICAE, 2022, 229 (02) :689-749
[5]   Markov triples with k-generalized Fibonacci components [J].
Gomez, Carlos A. ;
Gomez, Jhonny C. ;
Luca, Florian .
ANNALES MATHEMATICAE ET INFORMATICAE, 2020, 52 :107-115
[6]  
Kafle B, 2020, FIBONACCI QUART, V58, P226
[7]  
Karamata J., 1932, Publ. Math. Univ. Belgrade, V1, P145
[8]  
Koshy T., 2001, Fibonacci and Fibonacci Lucas Numbers with Applications, DOI [10.1002/9781118033067, DOI 10.1002/9781118033067]
[9]  
Luca F, 2018, FIBONACCI QUART, V56, P126
[10]  
MARKOFF A.A., 1880, Math. Ann., V17, P379, DOI [DOI 10.1007/BF01446234, 10.1007/BF01446234]