In this paper, we define the concept of the g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {g}$$\end{document}-neutrosophic metric spaces of order n as a generalization of neutrosophic metric space. We described some properties of this novel space and construct examples based on it, then we propose the concept of statistical convergence. Also, we define the statistical convergence and statistical Cauchy sequences in g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {g}$$\end{document}-neutrosophic metric spaces. Lastly, we offer an example to demonstrate our theorem.