Yttrium carbide thin film as an emerging transition metal carbide Prepared by plasma-enhanced atomic layer deposition for Dual diffusion barrier applications into Cu and Ru metallization

被引:0
|
作者
Kweon, Minjeong [1 ]
Park, Chaehyun [1 ]
Mohapatra, Debananda [1 ]
Kim, Sang Bok [1 ]
Bae, Jong-Seong [2 ]
Cheon, Taehoon [3 ]
Kim, Soo-Hyun [1 ,4 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Semicond Mat & Devices Engn, Ulsan 44919, South Korea
[2] Korea Basic Sci Inst, Yeongnam Reg Ctr, Busan 46742, South Korea
[3] Daegu Gyeongbuk Inst Sci & Technol, Ctr Core Res Facil, Daegu 711873, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan 44919, South Korea
关键词
Yttrium carbide; Transition metal carbide; Next-generation diffusion barrier; Plasma enhanced atomic layer deposition; Yttrium precursor; TUNGSTEN CARBIDE; SINGLE-CRYSTALS; NICKEL CARBIDE; Y2O3; FILMS; PRECURSOR; SPECTRA; GROWTH; WATER;
D O I
10.1016/j.apsusc.2025.163302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal carbides (TMCs) often possess superior properties to transition metal nitrides (TMNs) in hardness, thermal stability, electrical conductivity, and chemical stability. However, developing an atomic layer deposition (ALD) process for these materials remains in its early stages, especially yttrium carbide (YCx) thin films, which remained largely unexplored. This study focuses on developing a plasma-enhanced ALD-YCx process for high-quality, uniform, and conformal thickness control TMCs while highlighting the advanced properties to utilize as advanced diffusion barriers via a novel Y-precursor. The critical experimental process parameters, Y-precursor, and H-2 plasma exposure times are thoroughly optimized to achieve highly conductive (similar to 415 mu Omega<middle dot>cm), high crystalline PEALD-Y2C thin films with a growth rate of similar to 0.13 nm/cycle at 250 degrees C within the ALD temperature window (150-350 degrees C). Advanced aberration-corrected electron microscopies, electron diffractions, and spectroscopic techniques confirmed the formation of a nanocrystalline rhombohedral phase, C-to-Y ratio similar to 0.46, 4.63 g/cm(3) density, and excellent step coverage (95%) of a trench structure with an aspect ratio of similar to 1.5 and a bottom width of similar to 265 nm. The post-annealed PEALD-Y2C films maintained stable thermal and crystallographic properties, exhibiting effective dual diffusion barrier performance for Cu and Ru (similar to 40 nm) up to 900 degrees C, emphasizing its importance as interconnects in advanced semiconductor devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition
    Yun, Eun-Young
    Lee, Woo-Jae
    Wang, Qi Min
    Kwon, Se-Hun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (03) : 295 - 299
  • [22] Plasma-enhanced atomic layer deposition of indium-free ZnSnOx thin films for thin-film transistors
    Ryu, Seung Ho
    Hwang, Inhong
    Jeon, Dahui
    Lee, Sung Kwang
    Chung, Taek-Mo
    Han, Jeong Hwan
    Chae, Sieun
    Baek, In-Hwan
    Kim, Seong Keun
    APPLIED SURFACE SCIENCE, 2025, 680
  • [23] Low temperature SiOx thin film deposited by plasma enhanced atomic layer deposition for thin film encapsulation applications
    Lee, Young-Soo
    Han, Ju-Hwan
    Park, Jin-Seong
    Park, Jozeph
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (04):
  • [24] Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers
    Rampelberg, Geert
    Devloo-Casier, Kilian
    Deduytsche, Davy
    Schaekers, Marc
    Blasco, Nicolas
    Detavernier, Christophe
    APPLIED PHYSICS LETTERS, 2013, 102 (11)
  • [25] Plasma-enhanced atomic layer deposition of silver thin films for applications in plasmonics and surface-enhanced Raman scattering
    Cleveland, Erin R.
    Glembocki, Orest
    Prokes, S. M.
    NANOEPITAXY: MATERIALS AND DEVICES IV, 2012, 8467
  • [26] Effect of nanoscopic defects on barrier performance of thin films deposited by plasma-enhanced atomic layer deposition on flexible polymers
    Kovacs, Reka Lilla
    Gyongyosi, Szilvia
    Langer, Gabor
    Baradacs, Eszter
    Daroczi, Lajos
    Barkoczy, Peter
    Erdelyi, Zoltan
    THIN SOLID FILMS, 2021, 738
  • [27] Multiscale plasma and feature profile simulations of plasma-enhanced chemical vapor deposition and atomic layer deposition processes for titanium thin film fabrication
    Denpoh, Kazuki
    Moroz, Paul
    Kato, Taiki
    Matsukuma, Masaaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SH)
  • [28] High mobility polycrystalline indium oxide thin-film transistors by means of plasma-enhanced atomic layer deposition
    Yeom, H. -I.
    Ko, J. B.
    Mun, G.
    Park, S. -H. Ko
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (28) : 6873 - 6880
  • [29] Densification of silicon dioxide formed by plasma-enhanced atomic layer deposition on 4H-silicon carbide using argon post-deposition annealing
    Lee, Suhyeong
    Kim, Ji Min
    Kim, Changhyun
    Kim, Hyunwoo
    Kang, Hong Jeon
    Ha, Min-Woo
    Kim, Hyeong Joon
    CERAMICS INTERNATIONAL, 2018, 44 (12) : 13565 - 13571
  • [30] Structural, Optical, and Electrical Properties of InOX Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Flexible Device Applications
    Hong, TaeHyun
    Kim, KyoungRok
    Choi, Su-Hwan
    Lee, Seung-Hwan
    Han, Ki-Lim
    Lim, Jun Hyung
    Park, Jin-Seong
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 3010 - 3017