Data imputation in large and small-scale spatiotemporal time series gaps using BackForward Bi-LSTM

被引:1
作者
Galdelli, Alessandro [1 ,2 ]
Narang, Gagan [1 ]
Tomassini, Selene [3 ]
D'Agostino, Lorenzo [1 ]
Tassetti, Anna Nora [2 ,4 ]
Mancini, Adriano [1 ]
机构
[1] Univ Politecn Marche, Dept Informat Engn, Ancona, Italy
[2] Natl Biodivers Future Ctr, Org, Palermo, Italy
[3] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
[4] CNR, Inst Marine Biol Resources & Biotechnol, Ancona, Italy
关键词
Time series; Deep learning; Neural networks; Trajectory imputation; AIS; MONITORING-SYSTEM VMS; AIS DATA; VESSEL; FISHERIES;
D O I
10.1186/s40537-025-01163-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, tracking systems have transformed the understanding of spatiotemporal dynamic processes. However, these systems often face challenges due to missing data caused by technical limitations or intentional manipulation, leading to classification bias and hidden suspicious activities. In response, we propose a deep learning algorithm based on sequential Bidirectional Long Short-Term Memory (BiLSTM) to impute missing trajectories in spatiotemporal datasets. Our approach employs both backward and forward BiLSTMs resulting in BF-BiLSTM architecture to model temporal dependencies before and after the missing trajectories. We evaluated the algorithm on a realistic marine and aerial dataset, considering missing data trajectories on vessels and flights with missing data rates ranging from 5% to 30%. The model improves performance in terms of MAE (0.011 degrees), MSE (0.056%), MAPE (0.054%) and ADE (0.017 degrees) when compared to state-of-the-art approaches. By effectively addressing challenges in spatiotemporal datasets and improving existing benchmarks, our algorithm provides a robust solution for enhancing trajectory imputation in the context of monitoring systems potentially across diverse application domains.
引用
收藏
页数:18
相关论文
共 55 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   Mapping fisheries for marine spatial planning: Gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy [J].
Campbell, Maria S. ;
Stehfest, Kilian M. ;
Votier, Stephen C. ;
Hall-Spencer, Jason M. .
MARINE POLICY, 2014, 45 :293-300
[3]   The footprint of bottom trawling in European waters: distribution, intensity, and seabed integrity [J].
Eigaard, Ole R. ;
Bastardie, Francois ;
Hintzen, Niels T. ;
Buhl-Mortensen, Lene ;
Buhl-Mortensen, Pal ;
Catarino, Rui ;
Dinesen, Grete E. ;
Egekvist, Josefine ;
Fock, Heino O. ;
Geitner, Kerstin ;
Gerritsen, Hans D. ;
Marin Gonzalez, Manuel ;
Jonsson, Patrik ;
Kavadas, Stefanos ;
Laffargue, Pascal ;
Lundy, Mathieu ;
Gonzalez-Mirelis, Genoveva ;
Nielsen, J. Rasmus ;
Papadopoulou, Nadia ;
Posen, Paulette E. ;
Pulcinella, Jacopo ;
Russo, Tommaso ;
Sala, Antonello ;
Silva, Cristina ;
Smith, Christopher J. ;
Vanelslander, Bart ;
Rijnsdorp, Adriaan D. .
ICES JOURNAL OF MARINE SCIENCE, 2017, 74 (03) :847-865
[4]   A survey on missing data in machine learning [J].
Emmanuel, Tlamelo ;
Maupong, Thabiso ;
Mpoeleng, Dimane ;
Semong, Thabo ;
Mphago, Banyatsang ;
Tabona, Oteng .
JOURNAL OF BIG DATA, 2021, 8 (01)
[5]  
European Commission, Agreement on Port State Measures to Prevent, Deter and Eliminate Illegal, Unreported and Unregulated Fishing
[6]   Using AIS to Attempt a Quantitative Evaluation of Unobserved Trawling Activity in the Mediterranean Sea [J].
Ferra, Carmen ;
Tassetti, Anna Nora ;
Armelloni, Enrico Nicola ;
Galdelli, Alessandro ;
Scarcella, Giuseppe ;
Fabi, Gianna .
FRONTIERS IN MARINE SCIENCE, 2020, 7
[7]   Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data [J].
Ferra, Carmen ;
Tassetti, Anna Nora ;
Grati, Fabio ;
Pellini, Giulio ;
Polidori, Piero ;
Scarcella, Giuseppe ;
Fabi, Gianna .
MARINE POLICY, 2018, 94 :275-281
[8]  
Food and Agriculture Organization of the United Nations, Agreement on Port State Measures (PSMA)
[9]   Multimodal AI-enhanced ship detection for mapping fishing vessels and informing on suspicious activities [J].
Galdelli, Alessandro ;
Narang, Gagan ;
Pietrini, Rocco ;
Zazzarini, Micol ;
Fiorani, Andrea ;
Tassetti, Anna Nora .
PATTERN RECOGNITION LETTERS, 2025, 191 :15-22
[10]  
Galdelli Alessandro, 2021, Zenodo, DOI 10.5281/ZENODO.4761890