Quantum Magnetism from Low-Dimensional Quantum Ising Models with Quantum Integrability

被引:0
作者
Gao, Yunjing [1 ,2 ]
Wu, Jianda [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai 201210, Peoples R China
[2] Hefei Natl Lab, Shanghai Branch, Shanghai 201315, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
FORM-FACTORS; S-MATRIX; FIELD; ENTANGLEMENT; CRITICALITY; OPERATORS; ORDER;
D O I
10.1088/0256-307X/42/4/047501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum integrability provides a unique and powerful framework for accurately understanding quantum magnetism. In this review, we focus specifically on several quantum integrable low-dimensional quantum Ising models. We begin with the transverse field Ising chain (TFIC) at quantum critical point and examine how it evolves under perturbations, such as an applied longitudinal field or weak coupling to another quantum critical TFIC. These perturbations reveal a wealth of emergent quantum integrable field theories with exotic many-body excitations, elegantly characterized by conformal invariance and the E8 and D8(1) Lie algebras, respectively. In exploring these models, we also delve into the framework of exact scattering matrices, which is related to determining spin dynamics within these systems. Finally, we show how the emergent phenomena in these integrable quantum Ising models find experimental realization in Co-based quasi-one-dimensional quantum magnetic materials. The substantial theoretical and experimental advancements in these systems highlight the profound connections between quantum integrable field theory, statistical field theory, and condensed matter physics.
引用
收藏
页数:8
相关论文
共 69 条
[1]   Experimental observation of quantum many-body excitations of E8 symmetry in the Ising chain ferromagnet CoNb2O6 [J].
Amelin, Kirill ;
Engelmayer, Johannes ;
Viirok, Johan ;
Nagel, Urmas ;
Room, Toomas ;
Lorenz, Thomas ;
Wang, Zhe .
PHYSICAL REVIEW B, 2020, 102 (10)
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]   8 VERTEX MODEL IN LATTICE STATISTICS [J].
BAXTER, RJ .
PHYSICAL REVIEW LETTERS, 1971, 26 (14) :832-&
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   CONSTRUCTION OF GREEN-FUNCTIONS FROM AN EXACT S-MATRIX [J].
BERG, B ;
KAROWSKI, M ;
WEISZ, P .
PHYSICAL REVIEW D, 1979, 19 (08) :2477-2479
[6]   Controlling quantum many-body dynamics in driven Rydberg atom arrays [J].
Bluvstein, D. ;
Omran, A. ;
Levine, H. ;
Keesling, A. ;
Semeghini, G. ;
Ebadi, S. ;
Wang, T. T. ;
Michailidis, A. A. ;
Maskara, N. ;
Ho, W. W. ;
Choi, S. ;
Serbyn, M. ;
Greiner, M. ;
Vuletic, V. ;
Lukin, M. D. .
SCIENCE, 2021, 371 (6536) :1355-+
[7]   FIELD-THEORY OF THE TWO-DIMENSIONAL ISING-MODEL - CONFORMAL-INVARIANCE, ORDER AND DISORDER, AND BOSONIZATION [J].
BOYANOVSKY, D .
PHYSICAL REVIEW B, 1989, 39 (10) :6744-6756
[8]   Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry [J].
Coldea, R. ;
Tennant, D. A. ;
Wheeler, E. M. ;
Wawrzynska, E. ;
Prabhakaran, D. ;
Telling, M. ;
Habicht, K. ;
Smeibidl, P. ;
Kiefer, K. .
SCIENCE, 2010, 327 (5962) :177-180
[9]   Quantum criticality [J].
Coleman, P ;
Schofield, AJ .
NATURE, 2005, 433 (7023) :226-229
[10]   Quantum Criticality of the Ising-like Screw Chain Antiferromagnet SrCo2V2O8 in a Transverse Magnetic Field [J].
Cui, Y. ;
Zou, H. ;
Xi, N. ;
He, Zhangzhen ;
Yang, Y. X. ;
Shu, L. ;
Zhang, G. H. ;
Hu, Z. ;
Chen, T. ;
Yu, Rong ;
Wu, Jianda ;
Yu, Weiqiang .
PHYSICAL REVIEW LETTERS, 2019, 123 (06)