A note on extremal trees for a bound on the double domination number

被引:0
作者
Kalaiyarasi, Ravi [1 ]
Chellali, Mustapha [2 ]
Venkatakrishnan, Yanamandram B. [1 ]
机构
[1] SASTRA Univ, Dept Math, Tanjore, Tamilnadu, India
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
关键词
Double dominating set; Dominating set; trees;
D O I
10.1016/j.dam.2025.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a graph G, a vertex is said to dominate itself and its neighbors. A subset D of V(G) is a double dominating set if every vertex of V(G) is dominated at least twice by the vertices of D. The double domination number gamma x2(G) is the minimum cardinality among all double dominating sets of G. Cabrera-Martinez proved that for every nontrivial tree T of order n(T) with & ell;(T) leaves and s(T) support vertices, gamma x2(T) >= 21(n(T) - gamma(T) + & ell;(T) + s(T) + 1), where gamma(T) stands for the domination number of T. In this note, we provide a constructive characterization of trees attaining this bound in response to the problem raised by Cabrera-Martinez. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 9 条
  • [1] AN UPPER BOUND ON THE DOUBLE DOMINATION NUMBER OF TREES
    Amjadi, J.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (02): : 133 - 139
  • [2] Blidia M, 2006, UTILITAS MATHEMATICA, V70, P159
  • [3] New bounds on the double domination number of trees
    Cabrera-Martinez, Abel
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 315 : 97 - 103
  • [4] A note on double domination in graphs
    Cabrera-Martinez, Abel
    Alberto Rodriguez-Velazquez, Juan
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 300 : 107 - 111
  • [5] Chellali M, 2006, AKCE INT J GRAPHS CO, V3, P147
  • [6] A new lower bound on the double domination number of a graph
    Hajian, Majid
    Rad, Nader Jafari
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 254 : 280 - 282
  • [7] Harary F, 2000, ARS COMBINATORIA, V55, P201
  • [8] Haynes T.W., 2023, Springer Monographs in Mathematics, P644
  • [9] Haynes T. W., 1998, Domination in Graphs: Advanced Topics