Magnetic impurity-related optical absorption coefficients in a semimagnetic double quantum well under magnetic field and temperature effectsMagnetic impurity-related optical absorption coefficients in a semimagnetic double quantum well under magnetic field and temperature effectsAzmi et al.

被引:0
作者
H. Azmi [1 ]
K. El-Bakkari [1 ]
A. Fakkahi [1 ]
A. Mazouz [1 ]
M. Jaouane [1 ]
A. Ed-Dahmouny [2 ]
R. Arraoui [1 ]
M. Jaafar [1 ]
A. Sali [1 ]
N. Amri [1 ]
H. El Ghazi [3 ]
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory of Solid Physics (LPS), Department of Physics, Faculty of Science Dhar El Mahraz
[2] Sidi Mohamed Ben Abdellah University,Laboratory of Research in Science and Engineering (LaRSI), Faculty of Sciences and Technology
[3] Dhar El Mahraz,Laboratory of Advanced Materials and Applications, Faculty of Science
[4] Sidi Mohamed Ben Abdellah University,undefined
[5] SMPI Group,undefined
[6] ENSAM Laboratory,undefined
[7] Hassan II University,undefined
关键词
Optical absorption coefficients; Spin polaronic shift; Magnetic field; Temperature; Oscillator strength; Semimagnetic double quantum well;
D O I
10.1007/s00339-025-08551-6
中图分类号
学科分类号
摘要
This research explores how temperature (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{T}$$\end{document}) and magnetic field (γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upgamma$$\end{document}) influence the optical absorption coefficients (OACs) and oscillator strength (OSfi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{OS}}_{\mathrm{fi}}$$\end{document}) of a magnetic impurity (Mn2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Mn}}^{2+}$$\end{document}) embedded within a CdTe/Cd1-xMnxTe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CdTe}/{\mathrm{Cd}}_{1-\mathrm{x}}{\mathrm{Mn}}_{\mathrm{x}}\mathrm{Te}$$\end{document} dilute magnetic double quantum well (DQW). The calculation is conducted using the variational approach within the framework of the effective mass approximation (EMA). Additionally, the analysis incorporates the spin polaronic shift (SP Shift), evaluating its impact on the magnetic impurity states (1s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\mathrm{s}$$\end{document} and 2px\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\mathrm{p}}_{\mathrm{x}}$$\end{document}). The outcomes demonstrate that the OAC attaints its peak intensity when Mn2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Mn}}^{2+}$$\end{document} is situated at the center of the barrier compared to other positions. Moreover, variations in γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upgamma$$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{T}$$\end{document} lead to a reduction in the OAC magnitude and cause a red shift in the peak position. Besides that, the aforementioned effects have on opposite impact on the spin orientations.
引用
收藏
相关论文
empty
未找到相关数据