Quantum computing for space applications: a selective review and perspectives

被引:0
作者
Torta, Pietro [1 ]
Casati, Rebecca [1 ]
Bruni, Stefano [1 ]
Mandarino, Antonio [1 ]
Prati, Enrico [1 ]
机构
[1] Univ Milan, Dept Phys Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
关键词
Quantum Computing; Quantum Annealing; Quantum Machine Learning; Space Science and Technology; Scheduling problems; Earth Observation; Quantum Technologies; SUPPORT VECTOR MACHINES; IMAGE CLASSIFICATION; EARTH; REPRESENTATION;
D O I
10.1140/epjqt/s40507-025-00369-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Space science and technology are among the most challenging and strategic fields in which quantum computing promises to have a pervasive and long-lasting impact. We provide an overview of selected published works reporting the application of quantum computing to space science and technology. Our systematic analysis identifies three major classes of problems that have been approached with quantum computing. The first category includes optimization tasks, often cast into Quadratic Unconstrained Binary Optimization and solved using quantum annealing, with scheduling problems serving as a notable example. A second class comprises learning tasks, such as image classification in Earth Observation, often tackled with gate-based hybrid quantum-classical computation, namely with Quantum Machine Learning concepts and tools. Finally, integrating quantum computing with other quantum technologies may lead to new disruptive technologies, for instance, the creation of a quantum satellite internet constellation and distributed quantum computing. We organize our exposition by providing a critical analysis of the main challenges and methods at the core of different quantum computing paradigms and algorithms, which are often fundamentally similar across different domains of application in the space sector and beyond.
引用
收藏
页数:76
相关论文
共 262 条
[21]   LONG-TERM STABILITY ASSESSMENT OF QUANTUM DIAMOND MAGNETOMETERS IN LOW EARTH ORBIT [J].
Beerdeni, Yarne ;
Vandebosch, Remy ;
Ermakova, Anna ;
Nesladek, Milos ;
Hruby, Jaroslav .
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, :465-468
[22]   Quantum physics in space [J].
Belenchia, Alessio ;
Carlesso, Matteo ;
Bayraktar, Omer ;
Dequal, Daniele ;
Derkach, Ivan ;
Gasbarri, Giulio ;
Herr, Waldemar ;
Li, Ying Lia ;
Rademacher, Markus ;
Sidhu, Jasminder ;
Oi, Daniel K. L. ;
Seidel, Stephan T. ;
Kaltenbaek, Rainer ;
Marquardt, Christoph ;
Ulbricht, Hendrik ;
Usenko, Vladyslav C. ;
Worner, Lisa ;
Xuereb, Andre ;
Paternostro, Mauro ;
Bassi, Angelo .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 951 :1-70
[23]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[24]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[25]  
Bergholm V, 2020, PENNYLANE AUTOMATIC
[26]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[27]   A NASA perspective on quantum computing: Opportunities and challenges [J].
Biswas, Rupak ;
Jiang, Zhang ;
Kechezhi, Kostya ;
Knysh, Sergey ;
Mandra, Salvatore ;
O'Gorman, Bryan ;
Perdomo-Ortiz, Alejandro ;
Petukhov, Andre ;
Realpe-Gomez, John ;
Rieffel, Eleanor ;
Venturelli, Davide ;
Vasko, Fedir ;
Wang, Zhihui .
PARALLEL COMPUTING, 2017, 64 :81-98
[28]   Training Variational Quantum Algorithms Is NP-Hard [J].
Bittel, Lennart ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2021, 127 (12)
[29]   The disjunctive graph machine representation of the job shop scheduling problem [J].
Blazewicz, J ;
Pesch, E ;
Sterna, M .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 127 (02) :317-331
[30]  
Blekos K., 2023, A review on quantum approximate optimization algorithm and its variants