Improving the performance of quantum key distribution with weak-randomness basis selection

被引:0
作者
Chen, Zhi-Jiang [1 ]
Hao, Chen-Peng [1 ]
Gong, Li [1 ]
Guo, Jian-Sheng [1 ]
Wang, Yang [1 ]
Zhang, Chun-Mei [2 ]
Li, Hong-Wei [1 ]
机构
[1] IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450001, Henan, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum key distribution; Weak randomness; Advantage distillation; SECURITY;
D O I
10.1007/s11128-025-04780-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution is the art of sharing secret keys between two distant remote parties. However, owing to the imperfections in the practical devices, the eavesdropper Eve can apply some attacking strategies to affect the randomness of the basis selection in quantum key distribution systems. In this work, we prove the lower bound of the secret key rate for quantum key distribution systems from the perspective of basis selection hidden variables. Then, we analyze the lower bound of the secret key rate with the weak-randomness model. The growth of weak-randomness parameter will reduce the maximal tolerable error rate and transmission distance of quantum key distribution systems. To improve the performance of the practical quantum key distribution systems with weak-randomness basis selection, the advantage distillation method has been applied. We believe our work provides a tool for evaluating and enhancing the security of quantum key distribution systems with weak-randomness basis selection.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Key distillation from quantum channels using two-way communication protocols [J].
Bae, Joonwoo ;
Acin, Antonio .
PHYSICAL REVIEW A, 2007, 75 (01)
[2]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[3]   Quantum key distribution over 122 km of standard telecom fiber [J].
Gobby, C ;
Yuan, ZL ;
Shields, AJ .
APPLIED PHYSICS LETTERS, 2004, 84 (19) :3762-3764
[4]  
Gottesman D, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P136
[5]   Advances in the Quantum Internet [J].
Gyongyosi, Laszlo ;
Imre, Sandor .
COMMUNICATIONS OF THE ACM, 2022, 65 (08) :52-63
[6]   Multicarrier continuous-variable quantum key distribution [J].
Gyongyosi, Laszlo .
THEORETICAL COMPUTER SCIENCE, 2020, 816 :67-95
[7]   Multiple access multicarrier continuous-variable quantum key distribution [J].
Gyongyosi, Laszlo ;
Imre, Sandor .
CHAOS SOLITONS & FRACTALS, 2018, 114 :491-505
[8]   A Survey on Quantum Channel Capacities [J].
Gyongyosi, Laszlo ;
Imre, Sandor ;
Hung Viet Nguyen .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (02) :1149-1205
[9]   Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack [J].
Huang, Jing-Zheng ;
Weedbrook, Christian ;
Yin, Zhen-Qiang ;
Wang, Shuang ;
Li, Hong-Wei ;
Chen, Wei ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW A, 2013, 87 (06)
[10]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014