Greenhouse Gases Detection Exploiting a Multi-Wavelength Interband Cascade Laser Source in a Quartz-Enhanced Photoacoustic Sensor

被引:0
作者
De Palo, Raffaele [1 ]
Ardito, Nicoletta [1 ]
Zifarelli, Andrea [1 ]
Sampaolo, Angelo [1 ,2 ]
Giglio, Marilena [1 ]
Patimisco, Pietro [1 ,2 ]
Ranieri, Ezio [3 ]
Weih, Robert [4 ]
Nauschuetz, Josephine [4 ]
Koenig, Oliver [4 ]
Spagnolo, Vincenzo [1 ,2 ]
机构
[1] Univ & Polytech Bari, Dipartimento Interateneo Fis, PolySense Lab, Via Amendola 173, I-70126 Bari, Italy
[2] PolySense Innovat Srl, Via Amendola 173, I-70126 Bari, Italy
[3] Univ Bari, Dipartimento Biol, Via Orabona 4, I-70126 Bari, Italy
[4] Nanoplus Adv Photon Gerbrunn GmbH, Oberer Kirschberg 4, D-97218 Gerbrunn, Germany
关键词
quartz-enhanced photoacoustic spectroscopy; interband cascade lasers; greenhouse gases; CH4; CO2;
D O I
10.3390/s25082442
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study presents the performance of a multi-gas sensor for greenhouse detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS). The QEPAS sensor exploits an innovative, compact three-wavelength laser module as excitation source. The module integrates three interband cascade laser chips with a beam combining system, all enclosed in a compact metallic package with sizes of 40 x 52 x 17 mm to generate a single output beam. The multi-gas QEPAS sensor was tested in a laboratory environment for the sequential detection of two greenhouse gases, methane (CH4) and carbon dioxide (CO2), and a precursor greenhouse gas, carbon monoxide (CO). At an integration time of 100 ms, minimum detection limits of 21 ppb, 363 ppb, and 156 ppb, were estimated for CH4, CO2, and CO detection, respectively, all well below their natural abundance in air.
引用
收藏
页数:13
相关论文
共 34 条
  • [1] [Anonymous], 2021, WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide
  • [2] [Anonymous], No Sign of Greenhouse Gases Increases Slowing in 2023
  • [3] Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes
    Besson, JP
    Schilt, S
    Thévenaz, L
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2004, 60 (14) : 3449 - 3456
  • [4] Cantatore AFP, 2024, ENERG FUEL, V39, P638, DOI 10.1021/acs.energyfuels.4c03726
  • [5] Contreras-Teran M.A., 2024, P OPT SENS C 2024 AI
  • [6] Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants
    De Palo, Raffaele
    Elefante, Arianna
    Biagi, Gabriele
    Paciolla, Francesco
    Weih, Robert
    Villada, Valeria
    Zifarelli, Andrea
    Giglio, Marilena
    Sampaolo, Angelo
    Spagnolo, Vincenzo
    Patimisco, Pietro
    [J]. ADVANCED PHOTONICS RESEARCH, 2023, 4 (06):
  • [7] Low-Cost CO2 NDIR Sensors: Performance Evaluation and Calibration Using Machine Learning Techniques
    Dubey, Ravish
    Telles, Arina
    Nikkel, James
    Cao, Chang
    Gewirtzman, Jonathan
    Raymond, Peter A.
    Lee, Xuhui
    [J]. SENSORS, 2024, 24 (17)
  • [8] AN OBSERVATION OF THE GREENHOUSE RADIATION-ASSOCIATED WITH CARBON-MONOXIDE
    EVANS, WFJ
    PUCKRIN, E
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (08) : 925 - 928
  • [9] Figaro Engineering Inc, TGS3870: Gas Sensors & Modules-Products
  • [10] Enhancing methane sensing with NDIR technology: Current trends and future prospects
    Fu, Li
    You, Shixi
    Li, Guangjun
    Fan, Zengchang
    [J]. REVIEWS IN ANALYTICAL CHEMISTRY, 2023, 42 (01)