Advancement in modification of polyvinylindene flouride hollow fiber membrane contactors for CO2 capture

被引:0
|
作者
Mamah, Stanley Chinedu [1 ,2 ]
Goh, Pei Sean [1 ]
Ismail, Ahmad Fauzi [1 ]
Ng, Be Cheer [1 ]
Abdullah, Mohd Sohaimi [1 ]
Ahmad, Nor Akalili [1 ]
Hazaraimi, Muhammad Hafizuddin [1 ]
Tamidi, Athirah Mohd [3 ]
机构
[1] Univ Teknol Malaysia, Adv Membrane Technol Res Ctr, Sch Chem & Energy Engn, Skudai 81310, Johor, Malaysia
[2] Alex Ekwueme Fed Univ, Dept Chem Engn, Abakaliki, Ebonyi, Nigeria
[3] PETRONAS Res Sdn Bhd, Carbon Capture Utilizat & Storage CCUS R&d Dept, Kajang 43000, Selangor, Malaysia
关键词
Polyvinylidene fluoride; Modification; Membrane contactor; Gas absorption; CO2; capture; MIXED-MATRIX MEMBRANES; MASS-TRANSFER-RESISTANCE; SURFACE MODIFYING MACROMOLECULES; GAS-ABSORPTION; PVDF MEMBRANE; SUPERHYDROPHOBIC SURFACE; CLICK CHEMISTRY; HYBRID MEMBRANE; CARBON CAPTURE; FLUE-GAS;
D O I
10.1007/s42247-025-01059-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Membrane contactors are well-designed, environmentally friendly, waste free technology which have been of great interest in area of gas separations. Polyvinylidene fluoride (PVDF) is promising membrane contactor material characterized with high hydrophobicity, high solubility in wide range of solvents and good chemical resistance. In spite of the viability and merits, key intrinsic issue with PVDF membranes contactor is membrane wetting that consequently results in increase in mass transfer-resistance, membrane flux deteriorations and decline in overall long-term stability performances. Different modification methods and strategies that involve alterations of surface chemistry and structures have been identified to mitigate wetting issue. The intention of modification tactics is to enhance surface's hydrophobicity of PVDF contactor membranes thereby controlling membrane wetting. This review presents the approaches previously adopted for PVDF membranes modifications. The progresses besides performances of the modified PVDF membranes in area of gas separations are discussed. Lastly, challenges in addition to outlooks of modified PVDF membrane for membranes contactor were highlighted. This review has brought into limelight the methods and the justifications for PVDF membrane modifications geared towards effective performances of PVDF membranes contactors for CO2 absorption.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Part 7: A review of CO2 capture using hollow fiber membrane contactors
    Cui, Zheng
    deMontigny, David
    CARBON MANAGEMENT, 2013, 4 (01) : 69 - 89
  • [2] Experimental study on the effects of an ionic liquid for CO2 capture using hollow fiber membrane contactors
    Rostami, Sadegh
    Keshavarz, Peyman
    Raeissi, Sona
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 69 : 1 - 7
  • [3] Advances in hollow fiber membrane contactors for CO2 stripping
    Waseem, Muhammad
    Ghasem, Nayef
    Al-Marzouqi, Mohamed
    MATERIALS TODAY SUSTAINABILITY, 2025, 29
  • [4] Ammonia based CO2 capture process using hollow fiber membrane contactors
    Makhloufi, Camel
    Lasseuguette, Elsa
    Remigy, Jean Christophe
    Belaissaoui, Bouchra
    Roizard, Denis
    Favre, Eric
    JOURNAL OF MEMBRANE SCIENCE, 2014, 455 : 236 - 246
  • [5] A Review on Hollow Fiber Membrane Contactors for Carbon Capture: Recent Advances and Future Challenges
    Ramezani, Rouzbeh
    Di Felice, Luca
    Gallucci, Fausto
    PROCESSES, 2022, 10 (10)
  • [6] CO2 capture by aqueous ammonia with hollow fiber membrane contactors: Gas phase reactions and performance stability
    Villeneuve, Kevin
    Roizard, Denis
    Remigy, Jean-Christophe
    Iacono, Marcello
    Rode, Sabine
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 199 : 189 - 197
  • [7] Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors
    Golkhar, A.
    Keshavarz, P.
    Mowla, D.
    JOURNAL OF MEMBRANE SCIENCE, 2013, 433 : 17 - 24
  • [8] A comparative study on the structure of developed porous PVDF and PEI hollow fiber membrane contactors for CO2 absorption
    Mansourizadeh, A.
    Jazebizadeh, M. H.
    Vaseghi, M. R.
    Aghili, A.
    JOURNAL OF POLYMER RESEARCH, 2015, 23 (01) : 1 - 10
  • [9] Wetting mechanism of a PVDF hollow fiber membrane in immersed membrane contactors for CO2 capture in the presence of monoethanolamine
    Zhang, Zhaohui
    Wu, Xiaona
    Wang, Liang
    Zhao, Bin
    Li, Junjing
    Zhang, Hongwei
    RSC ADVANCES, 2017, 7 (22) : 13451 - 13457
  • [10] Adiabatic modelling of CO2 capture by amine solvents using membrane contactors
    Zaidiza, David Albarracin
    Belaissaoui, Bouchra
    Rode, Sabine
    Neveux, Thibaut
    Makhloufi, Camel
    Castel, Christophe
    Roizard, Denis
    Favre, Eric
    JOURNAL OF MEMBRANE SCIENCE, 2015, 493 : 106 - 119