Combining Ultrasound Imaging and Molecular Testing in a Multimodal Deep Learning Model for Risk Stratification of Indeterminate Thyroid Nodules

被引:0
|
作者
Athreya, Shreeram [1 ]
Melehy, Andrew [2 ]
Suthahar, Sujit Silas Armstrong [3 ]
Ivezic, Vedrana [4 ]
Radhachandran, Ashwath [3 ]
Sant, Vivek R. [5 ]
Moleta, Chace [6 ]
Zheng, Henry [4 ]
Patel, Maitraya [7 ]
Masamed, Rinat [7 ]
Livhits, Masha [2 ]
Yeh, Michael [2 ]
Arnold, Corey W. [1 ,3 ,4 ,6 ,7 ]
Speier, William [3 ,4 ,7 ]
机构
[1] UCLA, Dept Elect & Comp Engn, Los Angeles, CA USA
[2] UCLA, Dept Surg, Los Angeles, CA USA
[3] UCLA, Dept Bioengn, Los Angeles, CA USA
[4] UCLA, Med Informat, Los Angeles, CA USA
[5] UT Southwestern Med Ctr, Dept Surg, Dallas, TX USA
[6] UCLA, Dept Pathol & Lab Med, Los Angeles, CA USA
[7] UCLA, Dept Radiol Sci, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
MANAGEMENT; CANCER;
D O I
10.1089/thy.2024.0584
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Cost analysis of reflexive versus selective molecular testing for indeterminate thyroid nodules
    Hu, Q. Lina
    Schumm, Max A.
    Zanocco, Kyle A.
    Yeh, Michael W.
    Livhits, Masha J.
    Wu, James X.
    SURGERY, 2022, 171 (01) : 147 - 153
  • [22] Utility and cost-effectiveness of molecular testing in thyroid nodules with indeterminate cytology
    Labourier, Emmanuel
    CLINICAL ENDOCRINOLOGY, 2016, 85 (04) : 624 - 631
  • [23] Deep learning on ultrasound images of thyroid nodules
    Sharifi, Yasaman
    Bakhshali, Mohamad Amin
    Dehghani, Toktam
    DanaiAshgzari, Morteza
    Sargolzaei, Mahdi
    Eslami, Saeid
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 636 - 655
  • [24] A Novel Risk Stratification System for Thyroid Nodules With Indeterminate Cytology-A Pilot Cohort Study
    Gomes-Lima, Cristiane J.
    Auh, Sungyoung
    Thakur, Shilpa
    Zemskova, Marina
    Cochran, Craig
    Merkel, Roxanne
    Filie, Armando C.
    Raffeld, Mark
    Patel, Snehal B.
    Xi, Liqiang
    Wartofsky, Leonard
    Burman, Kenneth D.
    Klubo-Gwiezdzinska, Joanna
    FRONTIERS IN ENDOCRINOLOGY, 2020, 11
  • [25] Utility of mutational analysis for risk stratification of indeterminate thyroid nodules in a real-world setting
    Torrecillas, Vanessa
    Sharma, Anu
    Neuberger, Kaden
    Abraham, Dev
    CLINICAL ENDOCRINOLOGY, 2022, 96 (04) : 637 - 645
  • [26] Ultrasound Image Classification of Thyroid Nodules Based on Deep Learning
    Yang, Jingya
    Shi, Xiaoli
    Wang, Bing
    Qiu, Wenjing
    Tian, Geng
    Wang, Xudong
    Wang, Peizhen
    Yang, Jiasheng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [27] Combining the American Thyroid Association's Ultrasound Classification with Cytological Subcategorization Improves the Assessment of Malignancy Risk in Indeterminate Thyroid Nodules
    Larcher de Almeida, Aline Machado
    Delfim, Ricardo Luiz Costantin
    Vidal, Ana Paula Aguiar
    Chaves, Maria Clara d'Araujo Couto Martins
    Santiago, Ana Carolina Lopes
    Gianotti, Marcos Feijo
    Goncalves, Manuel Domingos da Cruz
    Vaisman, Mario
    de Carvalho, Denise Pires
    Teixeira, Patricia de Fatima dos Santos
    THYROID, 2021, 31 (06) : 922 - 932
  • [28] Outcomes of Indeterminate Thyroid Nodules Managed Nonoperatively after Molecular Testing
    Zhu, Catherine Y.
    Donangelo, Ines
    Gupta, Deepashree
    Nguyen, Dalena T.
    Ochoa, Joana E.
    Yeh, Michael W.
    Livhits, Masha J.
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2021, 106 (03) : E1240 - E1247
  • [29] Monitoring Outcomes of Indeterminate Thyroid Nodules and Predictive Capabilities of Molecular Testing
    Garrett, Samuel
    Millay, David
    Pierre, James
    Pluta, Natalia
    Russo, Christopher
    Neelon, Daniel
    Bauer, Elizabeth
    Hoang, Thanh
    Orestes, Michael
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2024, 133 (10) : 873 - 878
  • [30] Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy
    Anil, Gopinathan
    Hegde, Amogh
    Chong, F. H. Vincent
    CANCER IMAGING, 2011, 11 (01): : 209 - 223