Oxygen-vacancy-rich Ni/CeO2: UiO-66-derived high-efficiency catalyst for low-temperature CO2 methanation

被引:2
作者
Li, Yidan [1 ]
Yang, Yahui [1 ]
Huang, Zhenzhen [1 ]
Zhou, Huilin [1 ]
Zeng, Riying [1 ]
Lin, Xiaohan [1 ]
Ma, Xiuling [1 ]
Wang, Lihua [1 ]
Xiang, Shengchang [1 ]
Zhang, Zhangjing [1 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Prov Key Lab Polymer Mat, Fuzhou 350007, Peoples R China
关键词
Low-temperature CO 2 methanation; Defect engineering strategy; Oxygen-vacancy-rich; DFT; Formate pathway; Ni/CeO2-U; NI CATALYSTS; NANOPARTICLES; SUPPORT; CERIA; PERFORMANCE; HYDROGENATION; ACTIVATION; CONVERSION; STRATEGY; CEO2;
D O I
10.1016/j.cej.2025.162073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Methanation serves as a strategy for the comprehensive utilization of CO2, however, designing catalysts with superior low-temperature activity and sintering resistance remains a significant challenge. Oxygen vacancies can greatly influence the catalytic activity, thus constructing catalysts with abundant oxygen vacancies is crucial for high-performance CO2 methanation reaction. In this study, a defect engineering strategy was employed to synthesize 15Ni/CeO2-U catalyst. Based on the characterization results from Raman spectroscopy and quasi in-situ XPS, the 15Ni/CeO2-U catalyst possesses an exceptionally abundant oxygen vacancies compared to the 15Ni/ CeO2 catalyst. Additionally, the catalyst exhibited highly dispersed active sites, moderate metal-support interaction strength, and a smaller Ni nanoparticle size. These factors synergistically enhanced its performance in the low-temperature CO2 methanation reaction, achieving a CO2 conversion of 77.1 % at 200 degrees C, with selectivity and space-time yield for CH4 of 98.7 % and 204.0 mmol & sdot; g-cat1 & sdot;h-1, respectively. The results indicate that it is one of the best low-temperature CO2 methanation catalysts to date. Density functional theory (DFT) calculations and in-situ DRIFTS analysis revealed that the presence of oxygen vacancies facilitates the further hydrogenation of CO2 to methane via the HCOO* pathway. This work offers a worthy strategy to constructing high-performance catalysts suitable for low-temperature CO2 methanation.
引用
收藏
页数:14
相关论文
共 122 条
[1]   Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation [J].
Alcalde-Santiago, Virginia ;
Davo-Quinonero, Arantxa ;
Lozano-Castello, Dolores ;
Quindimil, Adrian ;
De-La-Torre, Unai ;
Pereda-Ayo, Benat ;
Gonzalez-Marcos, Jose A. ;
Gonzalez-Velasco, Juan R. ;
Bueno-Lopez, Agustin .
CHEMCATCHEM, 2019, 11 (02) :810-819
[2]   Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme [J].
Ali, Nisar ;
Bilal, Muhammad ;
Nazir, Muhammad Shahzad ;
Khan, Adnan ;
Ali, Farman ;
Iqbal, Hafiz M. N. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 712
[3]   A review of recent catalyst advances in CO2 methanation processes [J].
Ashok, Jangam ;
Pati, Subhasis ;
Hongmanorom, Plaifa ;
Tianxi, Zhang ;
Junmei, Chen ;
Kawi, Sibudjing .
CATALYSIS TODAY, 2020, 356 :471-489
[4]   A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons [J].
Atsbha, Tesfalem Aregawi ;
Yoon, Taeksang ;
Seongho, Park ;
Lee, Chul-Jin .
JOURNAL OF CO2 UTILIZATION, 2021, 44
[5]   CO2 methanation over Ni-promoted mesostructured silica nanoparticles: Influence of Ni loading and water vapor on activity and response surface methodology studies [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Saad, M. W. A. .
CHEMICAL ENGINEERING JOURNAL, 2015, 260 :757-764
[6]   Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO2 Valorization [J].
Boaro, Marta ;
Colussi, Sara ;
Trovarelli, Alessandro .
FRONTIERS IN CHEMISTRY, 2019, 7
[7]   CO2Methanation on Supported Rh Nanoparticles: The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size [J].
Botzolaki, Georgia ;
Goula, Grammatiki ;
Rontogianni, Anatoli ;
Nikolaraki, Ersi ;
Chalmpes, Nikolaos ;
Zygouri, Panagiota ;
Karakassides, Michalis ;
Gournis, Dimitrios ;
Charisiou, Nikolaos ;
Goula, Maria ;
Papadopoulos, Stylianos ;
Yentekakis, Ioannis .
CATALYSTS, 2020, 10 (08)
[8]   Nickel-magnesium mixed oxide catalyst for low temperature methane oxidation [J].
Caravaggio, Gianni ;
Nossova, Lioudmila ;
Turnbull, Matthew J. .
CHEMICAL ENGINEERING JOURNAL, 2021, 405
[9]   Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts [J].
Cardenas-Arenas, A. ;
Quindimil, A. ;
Davo-Quinonero, A. ;
Bailon-Garcia, E. ;
Lozano-Castello, D. ;
De-La-Torre, U. ;
Pereda-Ayo, B. ;
Gonzalez-Marcos, J. A. ;
Gonzalez-Velasco, J. R. ;
Bueno-Lopez, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265
[10]   Application of Ceria in CO2 Conversion Catalysis [J].
Chang, Kuan ;
Zhang, Haochen ;
Cheng, Mu-jeng ;
Lu, Qi .
ACS CATALYSIS, 2020, 10 (01) :613-631