Phonon hydrodynamic transport in bilayer graphene

被引:0
作者
Shen, Jia-Wei [1 ,2 ]
Luo, Xiao-Ping [1 ,2 ]
Xu, Jin-Yuan [1 ,2 ]
Guo, Yangyu [1 ,2 ,3 ]
Yi, Hong-Liang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Aerosp Thermophys, Harbin 150001, Peoples R China
[3] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Phonon transport; Phonon hydrodynamics; Bilayer graphene; Phonon Knudsen minimum; THERMAL-CONDUCTIVITY;
D O I
10.1016/j.ijheatmasstransfer.2025.127086
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study investigates the hydrodynamic characteristics of phonon-mediated thermal transport in bilayer graphene (BLG) through direct numerical simulations of the phonon Boltzmann transport equation, coupled with ab initio calculations. We systematically analyze size-dependent effects on in-plane thermal transport and provide a theoretical prediction for the Knudsen minimum phenomenon, which occurs at a characteristic width of approximately 1 mu m and a temperature of 100 K. Additionally, the impact of edge surface roughness on hydrodynamic transport is explored, revealing that smoother boundaries reduce phonon boundary scattering and suppress hydrodynamic effects. Our results further show that excessively short ribbon lengths hinder hydrodynamic phonon transport in rectangular ribbons, preventing the observation of the phonon Knudsen minimum. The absence of this phenomenon in short ribbons emphasizes the critical role of ribbon length in facilitating hydrodynamic regimes. These findings offer a comprehensive understanding of the interplay between geometric constraints and phonon scattering mechanisms in phonon-mediated thermal transport in BLG. This work provides a robust theoretical framework and valuable insights for experimental studies on phonon hydrodynamic transport in BLG.
引用
收藏
页数:11
相关论文
共 70 条
[51]   Roughness dependence of phonon-interface thermal transport: Theoretical model and Monte Carlo simulation [J].
Ran, Xin ;
Cao, Bingyang .
PHYSICAL REVIEW B, 2024, 110 (02)
[52]   Hydrodynamic signatures in thermal transport in devices based on two-dimensional materials: An ab initio study [J].
Raya-Moreno, Marti ;
Carrete, Jesus ;
Cartoixa, Xavier .
PHYSICAL REVIEW B, 2022, 106 (01)
[53]   Phonon Hydrodynamic Transport: Observation of Thermal Wave-Like Flow and Second Sound Propagation in Graphene at 100 K [J].
Rezgui, Houssem .
ACS OMEGA, 2023, 8 (26) :23964-23974
[54]  
Schutz G.M., 2018, Thermal Transport in Low Dimensions: from Statistical Physics to Nanoscale Heat Transfer
[55]   Derivation of a hydrodynamic heat equation from the phonon Boltzmann equation for general semiconductors [J].
Sendra, Lluc ;
Beardo, Albert ;
Torres, Pol ;
Bafaluy, Javier ;
Xavier Alvarez, F. ;
Camacho, Juan .
PHYSICAL REVIEW B, 2021, 103 (14)
[56]   Heat vortex in hydrodynamic phonon transport of two-dimensional materials [J].
Shang, Man-Yu ;
Zhang, Chuang ;
Guo, Zhaoli ;
Lu, Jing-Tao .
SCIENTIFIC REPORTS, 2020, 10 (01)
[57]   Mechanism of thermal conductivity reduction in few-layer graphene [J].
Singh, Dhruv ;
Murthy, Jayathi Y. ;
Fisher, Timothy S. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (04)
[58]   Efficient thermal conductivity modulation by manipulating interlayer interactions: A comparative study of bilayer graphene and graphite [J].
Sun, Zhehao ;
Yuan, Kunpeng ;
Chang, Zheng ;
Zhang, Xiaoliang ;
Qin, Guangzhao ;
Tang, Dawei .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (12)
[59]   First principles phonon calculations in materials science [J].
Togo, Atsushi ;
Tanaka, Isao .
SCRIPTA MATERIALIA, 2015, 108 :1-5
[60]   First principles kinetic-collective thermal conductivity of semiconductors [J].
Torres, P. ;
Torello, A. ;
Bafaluy, J. ;
Camacho, J. ;
Cartoixa, X. ;
Alvarez, F. X. .
PHYSICAL REVIEW B, 2017, 95 (16)