Daugavet- and Delta-points in spaces of Lipschitz functionsDaugavet- and Delta-points in spaces of Lipschitz functionsT. Veeorg

被引:0
作者
Triinu Veeorg [1 ]
机构
[1] University of Tartu,Institute of Mathematics and Statistics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2025年 / 119卷 / 3期
关键词
Lipschitz function spaces; Lipschitz-free spaces; Daugavet property; Daugavet-points; Delta-points; Primary 46B04; Secondary 46B20;
D O I
10.1007/s13398-025-01738-9
中图分类号
学科分类号
摘要
A norm one element x of a Banach space is a Daugavet-point (respectively, a Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-point) if every slice of the unit ball (respectively, every slice of the unit ball containing x) contains an element that is almost at distance 2 from x. We prove the equivalence of Daugavet- and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-points in spaces of Lipschitz functions over proper metric spaces and provide two characterizations for them. We also show that every space of Lipschitz functions over an unbounded or not uniformly discrete metric space contains a Daugavet-point and every space of Lipschitz functions over an infinite metric space contains a Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-point. Lastly, we show that there exists an infinite metric space such that the corresponding space of Lipschitz functions does not contain any Daugavet-points, thus also proving that Daugavet- and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-points do not always coincide in spaces of Lipschitz functions.
引用
收藏
相关论文
empty
未找到相关数据